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PREFACE

our shared opinion that what is learned in school mathe-

mals diftrs shar'ply from the outcomes desired by mathematjcs
4t

educators. We feel that curriculum and instructi-cm in school mathe-

matics is heavily influenced by the reflections of individuals who,

having successfully completed their own stud7, possess well organized

and coherent conceptualizations of a very large b9gly of knowledge.

Within that body of knowledge is a 1:ghtly conceived logical network

which guides the orgapization of currIlulum materials and instructional

procedures for school mathe tics. Such a logical organization, the

reasoning goes, should produce the desired outcomes.

Unfortunately many students study mathematics for years.and in

theLend, exhibit jarring voids in their own ability.to use mathematical

tools in very Simpie and presuma.bly. logical ways. Oen-. we find a dilemma.

AP
The investigation we have reported is primarily a desription of

how_col,lege students actually solve or fail to solve algebraic equations.

We have focused on describing the behaviors exhibited together with the..

spoken descriptionsof process. (Where possible we have provided a

theoretical framework for these data.. The reader will find evidence of

the thOught processes which operate. They, appear to us to be very dif-

ferent, even' among good solvers, from those thoughts and actions which

seem to be logical'expectations. Algebra may be generalized arrthmetic

from the mathematician'swint of view but our data suggest that few

colicr students have\that perspective.

iii
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Perhapsas researchers accumulate'more information of the sort
4.

'reported .here, the basis of curricula and instructional decisior*will
4

shift In -direction away from 'what, logjcally ought to be the outcome"

toward "what is-the observ.ed outcome". This is our hope.

L. R. C.

C. L.

J. B.

./
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CHAPTER 1

lntrodUction

Many high school graduates today are restricted in career choices

by the lack of adequate and proficient knowledge ir mathematics. One

key component needed for entry especially Lnto scientific careers.is

fluency in algebraic equation solving. This study was intended to

develop a coherent description of effective and efficient algOraic

equation solving and of those factrs that interfere wiih such perfor-

mance. This is an early stage in a line lof.investigation which should

ultimately yield implications for the learriing and teaching of algebra.
gio

This report presentsdetailed ,information about the waY in which

certain university stu6ents solve and fail to solve equaLiOns in elemen-

tary algebra. Understanding.the solution process as it is actually

carried out by students"will hopefulry aid teachers to transmit success- .

ful methods arid prevent the development of unsuccessful ones. Equation

Jiving involves a comptex ioterplay of many forms of knowledge. We

triI to use our study of this tak to shed new light on such perennial

issue,, In the psychololgy of prob4em-solving as the role of understanding,
4

as All as rnore recently raised questions in the psychology of skill.

in interpreting the data, we looked for three kinds of conclusions

relevant to education.. First, we tried to identify and classify' the

difficulties stu4ents had, and to guess the mechanism that produced those

difficulties, whether the mechanism was lack of a specific piece of know-

ledge or the failure to carry out a process. Such ideas about mechanisms

should be useful in Suggesting'countermeasures for these errors: an error

that results from a specific wrong idea cannot be overcome by emphasitjon

AAAZ,

1
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careful or neat work, while ad error in ext-,cution mjght be. Second, we

compared the work of successful and unsuccessful sOlvers, lookingfor

ideas that might help make more solvers successful. We wanted to fihd

differences in the way solvers worked on the problems that go beyond

the presence or absence of errors.

Third and more generally we tried to identify what must be learned

by the student of equation '.olving, following this question wherever it

led. We started from the legal moves of the algebra game, were led

immediately to the knowledge that underlied an appropriate choice of

move, and eentually to the knowledge that permits the legal moves and

illegal moves to be distinguished. We have also suggested that there is

information of a higher order relating these three kinds o Knowledge

that may be very important to learners and teachers.

PsychologistS of problem-solving have long disti.nguished insightful

behavior from uninsightful, without being able to precisely trace the

boundary,between them. Equation solving is an interesting task partly

because it is possible to envision both uninsightful and insightful ways

of performing it. We have found human perf:rmance mixing thes'e two

approaches, and have seen in some specific cases what undPrstanding does

and does not do.

Recent work in the psychology of skill by John,Seely Brown and

others, some of it directed specifically to algebra, has suggested how

the ability to pe-form a complex task is developed and how failures occur

and are handled. We have examined segments of beoavior whiCh can be used

as examples in evaluating andpe-haps extending these-ideas.

Related work

There has been litt e emprrical study'of ordinary algibra, despite
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,

its importahce. Brown and his associates 'Orown, Burton, et al 1975)

collected and inter reted errors from college students in remedial\i
v

..,

'courses. The present work can be seen as an ati.empt to carry forward /

the analysit of solVing behavior begun by.them, Matz (1979a; 1979b)

,/
NiOjk

has also been pursuing and extending thisWork, coneentrafing on'

3

mechanism underlying errors. Davis and Cooney (1977) have collected

errors from high school students. We have been able to supplement

their findings witn data-from a wider class of p'roblems. The theoret-

ical work of Bundy (1975) in developing an equatIon 'solving computer pro-
s'

gram has been discussed at some length below.

The enterprise of developing detailed accounts of behavior has been

carried out more widely in other areas of mafhematics, especialTy arith-.

metic. Most closely related is the work of Suppes and, Morningstar

(1972), that has been followed bY Brown and Burton (1978) ahd Larkin'.

(1978) . The techniques of representing procedural knowledaa developed

in this later work, and i.Qsartificial Intelligence by Sacerdoti (1977)

are now'being xtended to simpler skills such as counting by several

investigators. Van Len and Brown (1978) discussed these techniques.

Neves .(1979) is developing a model of the process of learning to solve
-

4equation$ froM, examples.
/

,

Overview of the study \ ,

\

We coilected protocols from to groups of university students sql-
,

Ning elementary algebra equations. One .gralp of students was selected

for proficiency frotil a populAtion of engi:neering and mathematics educa-

*10on students, who were expected to be good solvers. The other group

.

was an unselected sample of volunteers from an introductory psychology
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course. Mony 'students in this group were poor sOlver's, so we were able
A

,_tO .c
.-.^

pare goodnd poor performance. Thlr'wTitten work of'each st'uderr
. ,

.

).
and any sppken comments were retained for analysis, and zcomments

were keyed to the written work ,using video recordin madof the sol-

ving session,

To organize this large, rather unstructured body of data, we used,

an artificial model of the solution process, based on the work of Bundy

(197), This a,;tificial model,_,/described in (let* be,low, is perhap's
.71

the simplest system réalistically capable of equation solving. 'The com-

plex data actualgy obtained from human solvers can be compared Ith the
--

predictions of this simple model to bring into relief thoSif aspects'of

,human solving that deviate from it. This served td separate character-

istics of the human performapc.4-whib simply reflect the demands ,of the
A

task, and hence agree with the simple model, from those that indicatd

the human contribution.

The body of the r:eport is organized as' follows. Following a de-

scription of the materials and data collection procedure, including the

recruitment of subjects, summary of performance on the task is given.

The (Jridy modei.is then described, so that the details,of perfOrMance
r- 4

can be related to it. Strategy, errors, and speciaj features of skilled

performance are considered, followed by discussion of aspects of the

data that rsquire departures from the.simple model.
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CHAPTER 2

Development of the kesearch instruments
Probedures and Performance Summary

The equation solving behavior under investigation centirs. around

the type of equations (linear, quadratic, and'formulas) found in

elementary and iqtermediate level high schpilgebra courses. Since

thecontrast betwedrygood and poor performance was to be made with

soilege students, there were questions concerning the appropriateness

of the equa-tons to be used. A series of twelve (12) equations con-

taining such features as parentheses, fractions, signs, and literals

was pilot tested (see Table 2.1) with a small group (about 20) of

subjects representing the population of less pr.ocient solvers.

Table 2.1
)7'

Equations Used in Pilot Testing

. 4x - 2 - 18,

3 x 2 (x + 1 ) 14

5. 6(y-2) -3 (4-2) yT12

7. A (b;c)
h.: solve f r b

0
9. 5 4

T(74-

11. 1 '1 2
x x+3 x-3

2. 11 - 2x 3x + 17

4. A = p + prt; solve for p

3x 8-4x
2--

8. x + 2 [x+2 (x+2)] x+2

10. x2 + ) (x+5)(x+9)

1 2 + I + ; solve for x
R x y z

N



Pilot' data w,re examined for equatiori; which were challenging, but

not cumbersome. On this basis, certain of the pilot equations were

omitted and new equations added. The final instrument is shown'in

Table 2.2.

Table 2.2

Eations used in Fist Session

IA. Amp+prt; solve for p

2A. 1 1 1

+

1B. 2x x2

2B. '1 1 1 1

solve for x

3A. 9(x+40) 5(x+40) 3B. 7(4x- 3(4x-1)

A. xy+yz.m 2y; .solve for x

5A. 5 x-10
10

4B, k4-3+y
., 1

x2

5B.

1 x .

2

6A. x+2 x ) 6. x+2(x+2(x+2)) = x+2

7A. x-2(x+1) m 14 7B. 6(x-2) -3(4-2x) x-12

Thi's instrument consists of'seven (7) pairs of equations. Each,

pair was designed to probe for specific errors observed in the pilot 4

data. These 14 problems were given to all subjects in the first of

two'session. In soMe cases the equitjon,s'share specific structural

features, other times they vary in some systematic way.
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Corresponding to the seven paiTs of equationsused in SeSsion 1

the seven triples of similar equations shown in Table 2.3,were con-
.

structed forSession 2. The latter were ijltended to permit an error

seen in Session A to be elicited for discussion in Session 2.

if
Four pairs of more'complex equations of the same general tiope as

those for Session I were also prepared for us in Session 2, to al.low

the performance of skilled solvers to be assess d on more d<lf,icult
1

material. These equations are 7n 4in Table 2.

Table 2.3 \
'fission Two Equations
for Unselected Group

A = 214 +2kh + 2wh

x-x2

ax = b-x

2D

2E

a = b + l/c
x+1

1./x + 1 + 3 = 0
2

solve for h

11 9(7x.-15) - 8(7x+15) + 7

. 30 2(4x-2) 4-3'/(2x-1),.... 4

3E 2(3+x),.. 4(x+3) YIN.

4C xy + yz + xz = 1

4D bcx + atx + abx + abc ,s 0

4E ax + b4 + ab 2x + 2a

1 A-,

-451=0*
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Table 2.3 continued

5E

6C

6D

6E

7E

cr'

Al -1/x + 1/X2

1/x + 2x2

3+x
2

1+x

8

= x/3

(3450. 3+x = 1 0

7

x-2(x-2(x-2)) = x-2

x2 (X+1)(x-2) = 9

x+3
7

Table 2.4

Session Two Equations
for Selected Group

3

Cl 2(4x+2) J1+2x) A 0

DI (r+Y+z)x d
14+1,1q

A2 3x+5(x-3) = 5x+3)-3(x-

B2 a c d
x-b

C2 , 3(x+(a+b))+2(b+(x+a))

02 y+0) -(4+0 (21) 'I
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*

1An instrument for screeniqg the more proficient, fluent solvers

I.

ad.

on the basis of speed anci accuracy was also developed. Equations,like
/-

those 'in Table 2.2 or with.added complexity, were se.i.cted. The equa-1
V-

9tions for the screening,instrument are shown in Table 2.5.

Table 2.5

Equations Used to Screen'
Selected Group

a.

,1. 2 (x-5) 2.

1 3x+8
x+2 2-x x2_4

5. x-2 2x+3 4:L(.... 6. 2 15 1

F- 5 ( 2 `) -9- x + 3
J

. r 2

7, (2x+1) (8x-3) (4,1--1)
2

8. (L:

-,) (

.3

2. '(2x13). -3(x-6) 2...4

4. 5-3[2x -2 (5-3x = 4(2-3x)

,

9. A =11r.
2

217rh; solve for h 10. 1 1 4. 1 1

"c T solve for 6
a

11. (1i., + x x+i) -3 (2x - 1 )-1 12. 3x-x
2

04 12

13. x-3(x+3) - 0 14. 1 (x+2) -5 (x-8) 1(x+12)

15. x
2
-4 ... 4 16. 2 1

x
2
-1 x-1 ,

x 10 + (10%)x

19., 5x x+1 + 6 sit 0

x+t

18, 3Y-4x; solve for(X1
2 Y 71)

...

f
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,5ubject3, Two groOps of university students served as subjects. The

unseleQted group consisted of nineteen volunteers from an Introductory

Psychology course, who received course credit for their participation:

These students were not selected by the experimenters; preliminary

work had shown that this pool of 'subjects included many poor equation

solvers. Participation was voluntary, and three other students declined

to participate after the study was described to them. Data from three

more students were lost to techniCfal failure.

The unselected group varied in 'mathematical background; All had

had two years of algebra in secondary school, but some had continued to

take mathematics in college and others'had not. The time elapsed be-

tween-initial learning or last use and the time of this study must be

kept in mind.ein considering their Performance in the study. Specifi-

cally, it is likely that memory retrieval difficulties played a greater

role of this group than it might in a corresponding study with high
--

.school students.

The fifteen students in the selected group were recruited as

follows. A screening test (Table 2.5) was administered to 91 students

in a junior-level electric)1 engineering laboratory course and 20 stu-

dent mathematics teachers. The test was given in a classroom setting,

and the students were asked to record the time they started and finished.

All tests were scored for number of equations correctly solved.

Performance of the group ranged from 4 to 19 correct solutions and

from 8 to 30.minutes to complete the test.

The 24 students who had 16 or more correct solutions were selected

for telephone contact. Of these 4 could not te contacted,-4 declined

.00



to participate 'and 16 serv.ed as sOjects. One student's data' Was lost

due to technical,failure.
N-

. These students were paid $5.33 for a 1 1/2 hour session.

Prdfecure

All students served individually in the experiment. On arrival,

each student heardoa general desCr.iption of the experijNent .4nd its

goals, and,decided whether or not to parcipate.. General :nstructions

were then given, in which the student was asked to solve a series of

algebra equations, by whateve-r method the student chose while being

video-taped. No simplification of answers was required, and the student

was free to write down as many or as few steps of the solution as de-
%

sired. The student was asked to resist the temptation to be unusually

careful or clear in working on the problems and not to worry about mak-

ing mistakes. It was explained that\Qo record of the student's identity

'would be kept, and that the video tapes woUld not show the face. ,The

student was free to skip or abandon an equation at any time. A pen was

provided to prevent erasing. Questions were encouraged at any time dur-

::

ing t.he procedure.

The instructions also called for spoken'comments during the solution

process. For the first seven equations, the student was told "As you

work, try to describe your problem-related thoughts. Don't worry about

feeling foolish, but just try to say whatever comes to mind as you work."

For the second seven equations the student was asked to explain the sot-

ution process as if to a person studying algebra who asked for help on

homework. Comments on how to decide what to do with an equation were

__5pecifically requested.
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yhe first two sets of seven oquatons were drawn from the set

shown in TWe 2.2. These we're presentej in a random order, with the

;1
priviso tha one equation in each of the pairs shown in the table fall

/

in the first seven an'd the other in the second seven. Working time for

these 1-14, equations ranged from 10 to 30 mirutes.
. p

After completing the work on the first two sets, the students in

the Selected group were given two more sets of four equations each.

. These sets were drawn from Table 2.4, with the requirement that one equa-

tion frod each pair fall in each set. The first set $1 ved under the4.7
"describe your thoughts" instructions, and the second tinder the "explain"

instructions just as for the initial sets of seven. Working time for

...rthese 8 equations ranged from 15 to 30 minutes.

The UnselOcted group was treated differently. ,The first sets of

seven equations completed the first session, and Ahey returned a week

later for the second session. In the interval their initial work was

examined, and sets of equations related to those on which they had made

errdrs were selected from Table 2.3. Three sets of three equations were

prepared for each student, with equations that had been little used to

that point, being used to fill ovt the count for students who had lot
%

ilade errors on three different types. These three sets were presented

in random order, with the equatiohs within each set also randomized.

The students were asked to. comment on their solutions-under the "explain"

instructions as use&in the first session. In addition, the experimenter

4
asked forcomments on particular features of their solutioni er comments.

This second session lasted atuRit 25 minutes.
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,,
All sOl'utions alid comments were recorded in the following manner.

Each equation was written at the top of a blank 31 x 11 sheet of

paper. The student was seated at a table with this sheet placed in a

convenient position for writing. The experimenter was seated on the

opposite side of the table, controlling a video camera wittc a zoom lens

The caffre-ra was aimed at the area of the sheet on which the stud,q2leas

writing. A small TV monitor was placed on the table in such a way that

the experimenter could follow the written work and guide the camera by

viewing the monitor. A desk lamp was used to fill in shadows cast by

the student's writing handl otherwise no speci-al lighting wbs used. The

student was told not to worr7y about blocking the camera or moving the

worksheet as the exper:menter could move the came-ra. A microphone

placed on the table near the student recorded the comments of both stu-

dent and experimenter on the video tape. Additionally, an audio cassette,

recorder with a lapel microphone worn by the student was used to capture

the comments in a form more convenient for transcription than the video

tape.

Spoken comments of subject and experimenter were transcribed, with

pauses indicated by slashes timed by a metronome running at 40 beats per

minute: Numbered flags were placed on the writeen work for each solu-
.

tion indicating the order in which lines or parts of lines were wTitten,

by reference to the video recording. -Subscripts corresponding to theie

flags were placed in the transcript of the comments to indicate the re-
4,

lative timing ocf comments and written steps, -Flags also were used to

show where the subject pointed when'no mark was made.

0(4

on,

"



Overall description of performance

Table 2.6 shows the,performance of the subjects on the Session 1

14

equations. The symbol "e" in the table indictes thattthe subject com-

pleted the probleiat bUt made one or more errors in the solution. The

symbol n indicates that the subject did not complete the problem.

A number indicates t t the correct s, lution,was,attaihed, and gives'

the number of written steps in the solution, excluding false s,tarts and

.backtracking, The steps counted were the lines showing successive

transformations of the equation, with marks added to such a line not

counted.

Subjects are designated in the table and throughout the report, by

the codes assigned them when they arrived to participate in the study

so there are gaps in the numbers for subjects whose data were lost or

who declined to participate after being assigned a code. Codes start-

ing with S were assigned to the unselected solvers, and those starting

with E to the selected solvers: the letters may be taken to stand for

Solver and Expert. These subject codes will be joined with equ,ation .

numbers to identLfy examples discussed in the report. The designation

SI 45 would identify the work of subject Sl on equation 4B.

Table 2.6 displays the subjects'grouped according to the number of

,Session 1 equations they were able to solve. In Table 2.6 and in the'

grouping one error discussecOlpelow is not counted: Equation 5B has one

as an extraneous root, but In Table 2.6, one was counted correct. This

was done to avoid placing undue weight on correct handling of the rare

extraneous root problem in ranicing the solvers. As long as any partial

credit is given for one as a solution to 55,,the grouping_ishown is un-

changed.
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1,5

J
Interestingly, there was little difference overall In the lengths

of solutions generated uncle:- the "descr.ibe your thoughts" and "explain"

instructions, Th,7. average acros% equations of the average solution

length for 'describe your thoughts" solutions to the Session I equa-
,

tions was 3.4 steps, and for "explain", 3.7. The "explain" solutions

were longer for 9 of the 14 equations and shorter, for the other 5.
;

Though this iAcates thlk the difference was not consistent for equa-

tion 1E3, the incroase In length under "explain" instructions was sig-

nificant (rank sum test T' = 1514.5 p4.001).

Tables 2.7 and 2,8 Show the correctness of solutions for the

Session two'pquations.. Here "c" means correct, "e" error as in Table

2.6, and "n" 'not completed, The symbol "t" indicates a problem not

completed because of insufficient time.



E3

E5

E8

E9

E13

E14

E16

S8

517

S 1 9

No.

. Correct

Average
go.

Steps

Table 2.6

4111i

Pe4ormance on Session 1 Equations
Top Ten Solvers.

EquatiOil

IA iB 2k 28 '3A 38 4A.48 5A 58 EA 613. 7A, 78

2 3 2 2 3 7 2 6 4 3 4 3 5 5

2 3 3 3 3 4 2 4 5 4 5 4

1 4 3 2 3 3 2 4 3 6 4 3 3

2 3 4' 3 3 e 2 7 3 10 3 .5 3 3

3 e 2 2 i 3 2 4 3 4 3 3 3

2 1 4. 3 3 5 2 6 e e 3 4 3 4

2 4 14 4 3 4 2 6 4 6 3 5 3 4

2 3e
,

2 3 3 3 5 6 5 4 e 3 4-

2 4 5 8 3 5. 2 6 4 5 6 .4 6 4

2 e 3 3 e 3 1 4 3 3 3 4 3 4

10 8 9 9 9 9 10 10 9 9 10 9 10 10

2.0 3.1 3..3 2.7 3.0 4.4,2.0 5.2 348 5,2 3,6 4.1 3.5 3.8

e - denotes error

number
correct

14

14

14

13

13

12

14

12

13

12
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IA 18 2A

. ,

Table 2,6 continued

Middle 14 Solvers

Equation

28 3A 38 4A 4B 5A 58 6A 68, 7A 78

number

correct,

El 2 3 -4 4 3 5 2 e 4 5 e e 3 4 11

E2 2 3 3 4. 2 3 2 e 4 e 1 5 , 3 e 11

E4 2 e 4 2 3 3 1 7 4 e 3 e 3 4 H

E6 2 e 4 2 3 3 2 3 3 4 3 ee 3 11

'9.E7 2 e 3 3 3 3 2 n 4 2 3 6 es e 10

£10 2 e 3 3 e 3 2 4 3 e 2 4 2 4 c" 11

Ell 2 e 2 2 e 3 2 4 4 3 2 e 3 4 11

E12 2 1 3 3 2 e 2 e 3 4 3 e 4 6 11

S7 2 e 5 5 4 5 n e 4 e, 5 5 5 6 10

SIO e e 4 e 3 5 2 5 4 6 3 5s. 3 5 11

Sll 5 3 5 e 3 4 2 6 3 3 e e 3 3 11

S12 4 e e n 4 3 e 7 6 7 j 5 4 4 10

S18 2 e 5 n e 3 2 3 3 4 3 e 4 4 10

523 n 4 5 n 3 4 2 e 6 6 3 5 4 e 10

No.

Correct 12 5 13 9 11 13 12 8 14 10 12 7 12 11

Average
Mo,

Steps 2.4 3.4 3.8 3.1 3.0 3.6 1.9 4.9 3.9 4.4 3,0 5.0 3.4 4.3

e denotes error

n - denotes not complete

s-
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S1 3 e e

S3 e 3 n
%

S5 n e 6

S6 2 n 5

S 13 e e 5

S15 e e 6

S16 e e e

$20 e e e

521 enen
S22 e e e

No.

Correct 2 1 4

Average
No.

Steps 2.5 3.0 5.5

e - denotes error

4

Table 2.6 continued

Bottom Ten Solvers '

Equation

18

,

number
28 3A 38 4A 48 5A 58 6A 68 7A 713 correct

e 3 5

e 3 4

e 4 4

n 3 4

n e e

n 3 e

e e e

n 4

3 e

e 3 e

t

e n e e e ee
n e n n 4 5 3

2 e e 'e e e e

2 e 4 3 e e 3

n 4 4 5 3 e 1
4

2 5 5 6 4 4 e

e e e e 4 e e

eneeeeeee
2 n e n 3 4 3

e e ee e e e

0 8 4 4 2 3 3 5 3 4

4 4

4 7

5 5

4 9

5 7

4 ,9

e 1

I

4 6

e I

- 3.2 4.2 2.0'4.5 4.3 4,7 3.6 4,3 3,0 4.3 /

ri

n - denotes not complete

P



Takible 2.7

Performance on foliow-up equations
for unselected group

Equation

IC ID IE 2C 2D 2E 3C 3D 3E 4C 4D 4E 5C 50 SE 6C 6D 6E 7C 70 7E

Si e fl e C C

S3 n cn tc nc e c c

S5 c e e

S6

S7 c c e

S8 c c c c c

S10 c cc c c c

511 c c c

SI2cnc ttt
S,13 cee ce
515 t c e

SI6

.s17

518

519

520
t

521 C. t t

522 e e e

523ccc ccc
0

C C C

C C C

C C C

c , denotes correct
.

A, demotes error
. n denotes not completed

t - denotes insufficient time

e c c

e e n e t

n C c c c c c c e

c c c c c

c c c

c c c

c c c, e e c

e e c

c n c

t te e

c c c

C C C

c c c

n n n e n n nee
n n n e n e

a e en
c c e

c c c

e c

t t e

c c c

C C C
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Table ,2.8

Performance on Session Two Equations
for Selected Group

Al' A2 81 B2 Cr. C2 DI D2 Total dorrect

El c c c c c c c e 7

E2 c c c c c c c c 8

£3 c c c c c c c c 8

E4 e c e e c c e n 3

E5 e c c c c c
,

c 7

E6 e c c c .c c c e 6

E7 c c c c c c c c 7

E8 c c c c c C e 7

49 c c C. c c c c e 7
\

EIO c c e c e c c e 5

Ell ,e c c e c c e 5

E12 c c ,c c c c 7

E13 c e c c c c c 7

El4

E16

e

c

e

c

c

c

c,

e

c

c

c

c

c

c n

6

6

Total

Correct 13 13 13 13 15 14

c - denotes correct

e - denotes error

n - denotes not completed
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CH1OPTER

The Bundy Model

7Bundy (1976) presented an outline of.the organizat.ion of a program

to solve equations. Though his model i:1,ot intended as a psychological

model, it.nevertheless makes a convenient starting point for considering ,

human performance.

The program,operates on tree representations Of equations, as in

F1g-3.1. This representatron avoids the need.for parentheses andmakes
1011k

o0rator, operand relationships easily apparent.

Figure 3.1

fr

Tree representation of the equation 5x - 3x + 1

The trees are transformed by the application of operaVrs (called axioms

by Bundy) selected from a store. The operators are straightforward uses

of arithmetic principles. Examples appear in Fig. 3.2.

Figure 3.2
Example Opofators

V u

(u+V).4 u

w (u+V) w.0 + V.w

1110.0 4'> YON w (u + v)
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Each operator has an crild pattern', which must be matched In applying ther N

operator, and a new pattern, showing how the...Operator chandes the tree
7-

to which it is applied. The program has a pattern matcher which is able

to tell when an old pattern can be matched to a tree and establish what

parts of the tree correspond to the variable§ in the old pattern. The

pattern matcher embodies principles like commutativity and associativity

of addition and multiplication. This means that operators need not be

stated in different forms to apply to trees which differ simplyvin order

of addends, for example. The pattern matcher is also able to call the

equation solVer recursively to determine complex matches. An exampre

is presented in Figure 3.3 below.

Several operators, typicallvr,pre applicable to a given equation

vtree. The selection of which operator should be used 0 governeckby

simple heuristics that partition the operators into groups appropriate

to reaching specified subgoals. These subgoals break up the solution

process into phases, which can be described as follows for an equation

that initially has two occurrences of the unknown.

The first phase is attraction, which has as its goal the rearrange-

ment of the occurrences of the unknown in such a way that one can be elim-

inated by a further operation. Attraction'is guided by Ileuristics-that

identify the smallest subtree of the equation containing the occurrences

and that tey tf, reduce the number of links,cf the tree connecting the

occurrences. Operators that have thi:s potential are designated "helpful

'to attraction" in the operator store.

Collection is the phase in which'occurrences of the unknown are

actually eliminated. *To limit search,-oniy ,,ingle operators that could

eliminate an,occurrence are considered. As for attraction, attention is
,

tJAw
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focused on the smallest subtree cOntaining the occurrences of the un-

known when'matclles are sought, and operators useful to collection are

marked in the operator store.

If more than two occurrences of the unknown are present, attrac-

tion and colle.ction must be repeated. only one is present, they can

be skipped, and 04 final phase, isolation, entered at once. Tht goal

of isolation is to remove any structure in which the unknown is embedded,

leaving the equation tree in solved form.

At the end of each phase a rudimentary simplification is performed.

This is limited to the removal of zero from sums and othir such routine

simplifications. No multiplication, factoring or other rearrangements

are performed. As with the phase described above, operators appropriate

for simplification are designated in the operation store.

Figure 3.3 shows an example of a solution illustrating the operation

of these phases.

Figure 3.3

The Bundy Program - Linear Equation

EQUATION OPERATION PHASE

5x - 3x + 1 u = -v attraction

u,+ v w

5x +(-3x) w.0 + v.w collection

w .(u+v)

x (5 -3) 1 arithmetic done in

1) simplification

x (2) = 1

x 1/2

u.v w isolation

u w/v for v/O

171
1L) tjl



Figure 3.4 shows a more complicated example taken from Bundy (1975)%

(n which the pattern-matcher calls.the equation solver recursively to

solve a quadratic equation.
Figure 3.4

The Bundy Program - Quadratic Equation

EQUATION 1

ax2 bx c 0

4.

a [ (x + b \2
2a/

2
+ c 0

24

DISCUSSION

ollection tries the operator

u2 + 2.u.v + v2----4(u+v)2

to collect the x's in ax2 + bx.,

3 I

Choosing u as the variable to

be matrhed with x, the structuee

containing the u's, u2 + 2.u.v

is identified, and the operation

changed to u2 + 2.u.v

(u+v)2 - v2. In matching

x2 + 2.x.v to ax2 + bx the pro-

gram tried to find a w that can

be multiplied times x2 + 2xv so

that w.l. ... a and w.2.v m b.

These simultaneous equations are

solved, giving w a, v b .

2a

So the operation performed is

ax2 4 w [(u+v)2 - v2]

which is

I (x1) 2 eh) 2

Isolation now proceeds, since

there is just one x.
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Figure 3L ccintinued

a [ a)(x+1312 - (b

(x 112 _(b )2

2a 2a

+ b )2 (b )2

2a 2a

a

L
a

x + b

,2a
(1) 2

a

x -b \kb 2

a

c

2a a

-c

This Ys the equivalent to the fami.liar

+ b 4ac

20 "Ake
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The objective of Bundy's program is the solution of the search pro-

blem presented by the large number of operators appli9p1e to a gjven

equation'. Other systems for algebraic manipulation (Moses', 1971) solve

the problem by reducing expressions to canonical forms that can be manip-

ulated in s,tandard ways. Bundy argues that his heuristic approach, which

is extended in his paper to cover elementary function symbols as well as

the four arithmetic operations, may solve a wider range of problems.

any case, since human solvers do not appear to use canonical forms, it

'seems that Sundy's use of heuristics for operator selection offers a more

plausible point of reference foikonsidering human solvers.

In considering Bundy's model as an account of human solving, some

changes seem called for immediately. First ;t seems reasonable to replace
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the equation trees by the ordinary written syntax used by the solvers,

so that operations are foymulatedl'as'operationS on.strings. This makes

it more difficult to determine the distance between occurrences of a

4ymbol, as used in the attraction phase, but this information is never-

theless stifl available. As will be seen, parentheses as used in the

striff ,...notation seem to have some effectstn solvers' behavior, so their

Inclusion Ts desireable.

SeCond, Bundy's model is intended to produce only correct solutions,

so that all operations are mathematically valid, pattern-matching always

respeCts the syntax of expressions and the actual execution of opera-
.

tions is always accurate. Of course, these requirements must be relaxed

in adapting the framework for a psychological model.

In relating human performance to this simple model we, will first

discuss two areas in which useful agreement is found: strategy, that is,

the selection of opvrators to reach the goal of solving the equation,

)and errors, 'the $.0a s in which mathematically invalid results are obtained.

We then discuss some difference between skilled and less skilled perfor-

mance that relate to the Bundy model, Finally, we turn to a discussion of

several aspects of human performance which seem to be outside the scope

of the simple model. We wish to repeat here that the Bundy model is not

intended to be a psychologioal model, and our discussion is not a criti-
e

cism of it but an attempt to use Bundy's insights to clarify the patterns

in our data. f



CHAPTER 4

Strategy Analysis

\.The strategies used by solvers:ovtdes one important way of

describing observable differences in solving behavior. In this

chapter we consider the strategies used biy the top ten solvers, the

middle 14 so:vers and the bottom ten solvers and discuss.the relation-

ship of those strategies to those suggested by the Bundy model.

The Bundy model establishes priorities to guide thd choice of

operations to apply to an equation, Recall that the model first

attempts to attract instances of the unknown, moving them together,
. :

then to collect Instances so that only one is left. If there is only

one instance, the model isolates the unknown, stripping off any.oper-

ations in which It is embedded.

These priorities seem to agree reasonably well with those' of

human solvers, though there are some differences. Table 4.1 displays

the choices made by the solvers for each of the 1'4 equations in Ses!ion 1.

'The choices mentioned are illustrated in Table 4.2. The choices given

are the initial choices presented by the ,equation in its original form,

and a box in Table 4.1 indicates the choice favored by the basic strategy

the Bondy model. No bo'x appears for equations 48, 5A, and 58 because

ihese equations have x In the numerator,and,denominato'r of a fraction,

and it is not clear how the Bundy model would proceed in these situations.

The needed operation is to clear the fraetion, but no operator to do this

*
is :isted as useful for attraction In Bundy's tentative list, perhaps

beFause it does not reduce the dstae between the occurrences of x in

Bundy's expression tree notation. eems likely that such an operator

27



14ttract 1

r

A

and ohoit'è

IA

...

Table 4.1

Strategic .choices

Where the Bundy Model makes a clear choice,
that is indicated by a box.

p's 1

Other

18

iAttract 1

Canc'el ordivide

Other

2A

!Isolate 1

Clear or combine
fractions '

Other

28

Isolate

Clear or combine
fractions

Other

3A

[Attract I

Multiply Out

Cancel or divide

38

Multiply out

Cancel or divide

Introduce variable

Top 10
Solvers

Middle 14
Solvers

Bottom 10
Solvers .A11

1 0 1 1 0 21

0 3 10 13

3

3 5 2 10

1 5 5 11

7 8 4 19

3 5 2 10

4 5

10 3 20

3 3 1 7

0 1 6 7

0 3 0 3

9 7 9 25

4 1 6

1 3 0

7 10 9 26

0 1 2

0 2

3 S

.1c



Equation
and choice

4A

11.solate

Factor out y

Other

4B

Collect x's

Clear fractions

Other

5A

Table 4.1 continued

Top 10 Middle 14 iottom 10
Solvers Solvers Solvers All

a 8

2 6

0 0

2 3

7 ill,

1 ,0

Clear fractions 7 11

Simplify 5110 3 3

Other 0 0

5B
Collect by cancelling 3 6

Clear fractions 7' 8

Other 0 0

6A

[D.,istribute and collect 1 10

Other 0

69

[Distribute and collect 1 3

.Distribute twice

Cancel or divide

7

13

1.

3

0 5

DiStribute and collect 10

Isolate x A 0
7

0Other 0

3 19

3

4 4

4 9

4 22

2 3

,

5 23

2 8

3 3

4 13

3 18,

3 3

6

4
I.

29

5

0 6

-5 18

5 10

30

1 1

3 37

29



EquatiQn.
and choice

Tabl,e 4.1'continucd

Top, 10 Middle 14 Bottom 10
Solvers Solvers Solvers. All

7B

TITTE-Ft
distribute, coll.ect

Distribute,
distribute, other,
collect 2

'Other' 0
A

Table 4.2

Ma.

12 9 29

1 0 3

1 2

illustration of strategic choices listed In Table 4.1

IA collect p's p (l+rt)

1B attract 2xx2 ---)2x-x2 0

cancel or divide 2x...x2---42

2A isolate 1 1 _41 1 1

3 x 7 x

clear fractions 1 1 4.1_4 21 + 3x
3 /

combine fractions 1 1 1 1 4. 7+x

7;z-

26 As for 2A

3A awact 9(x+40)..5(x+40)----(X-40)-5(x+400

multiply out 9(x+40)..5(x+40)---49,0360m5x+200

Cancel or divide 9(x+40).5(x+40)---49.5

'30
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35 attract

Table 4.2 continued

7(4x-l)73(4x-l)+4---37(4x-1)-3(4x-1)-4

multiply out 7(4x-1)=3(4x-1)+4--428x-7=12x-3+4

4cancel or divide 7(4x-1)=3(4x-1)+4---47=34-

introduce va'riable 7(4x-1)=3(4x-1)+4---*7Y=3y+4

4A isolate

factor out y

48 Collect x's

Clear fractions

5A clear fractions

simplify 5,00

55 collect by
cancelling

clear fractions

6A distribute and
collect

68 distribute and
collect

distribute twice

cancel or divide

7A distribute and
collect

isolate x

xy+y2=2y---)xy.m2y-yz

xy+Yz2y--4y(x+z) 2y

x+3+x .1 2x+3
x2 x2

x+3." = 1-.0x+3+x . x2
x2

5 x-10
Tem -;73----* 5(x+5) l0(x-10)

5 . . x-10
10 x+5'1---77-1 x+5

, 2
2 ----) 1 +x . 2

1 -x

I-x2
=

2
= 2(1-x)

x+2(x+1) 4--43x+2..4

x+2(x+2(x+2))...x+2---)x+2(3x+4)=x+2

x+2(x+2(x+2))x+2 --4x+2x+4x+8 .x+2

x+2(x+2(x+2))=x+2--3x4-2(x+2) = 1

x-2(x+)) 14 -x-214

x-2(x+0114-4x 14+2(x+i)

7B distribute,

distribute, collect 6(x-2)-3(4-2x)..x-12--.4.12x-12-12-x-l2

distribute, 6(x-2)-3(4-2x).-12---*6x+6x-xm12+12-12
distrlsbute, othar,
collect

-

31
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should nonetheless be Inc1u44 for use in attraction, since it is

sometimes necessary to set up collection. In equation 58, collection

is possible by factoring l-x2 and dividing but it is'uncertain that

the pattern-matOer would discover this, so no favored choise is

listed.

Of the 11 equations for which a choice is favored by the Bundy

strategy, the Most common choice made was the favored one for eight

equations. Equations 3A and 38 are two of the exceptions, possibly

because the favored choice requires dealing.with repeated subexpres-

sions as a unit- Equation 3A also offers a popular cancellation choice,

which is not available as such in the Bundy modet.

In the other exception, equation 68, human solvers prefer to

complete the clearing of parentheses berkre proceeding to combine terms,

whereas the Bundy model,would collect x s as it went along. In fact
.

the multiplying out of the parenthesized quantities would be just a part

of a cOlection operation an'd would not be done separately, It seems

from solvers' comments that clearing of parentheses or multiplying out

is itself a subgoal for many4human solvers.

Although the Bundy model often identifies the most popular choice,

there are a number of minority choices that deviate from it. Cancella-

tion, already mentioned(for equation 3A, is popular on equation410 and

68. The favored collecti.on in equation IN is apparently difficult, and

even though there is no really viable alternative many solvers did not

use it. Clearing and combining fractions are important for equations

2A and 28, eveh4though they increase the number of occurrences of x.

Clearing fractions is also the most pop-lar chofce for 4B, 5A, 58,

where agreement with the Bundy scheme cannot be assessed.
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There is some indication that better.solvers May tend to agree more

with the Bundy choices than do poorer solvers. For the eleven equations

where a choice canbe favored, there is only one case, 7B, where the

bottom 10 solvers agreed with Bundy more often than the top ten, Equa-

tion 3A is Some of the lack of-agreement of the poorer solvers

cOmes from their having available spuri.ous operations which lend them-

selves to deviant strategic choices.

Consist y of strategic choices Do solvers' strategic choices reflect

a stable hierarchy of preference, like that in the model, so that similar

choices would be made consi5tently for similar equations? This question

deserves more attention, but can readily be examined only for equations

2A and 2b ambng the Session 1 problems, since only these two offer

closely matched choices. As shown im Figure 4,1, there is a strong

tendency for solvers to make similar choices on the two problems.

'Igure 4.1

Copsi.stency of Strategic choice for equation 2A & 2B

Equation 2B

Isolate Decollect Other

Equation
2A

Isolate

Decollect

Other

,-

16 2

2 6 2

2 . 0

1
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Quadratics As shown in Fig. 3.4, the Bundy system is able to solve

quadratic equations without any adjustment of strategy or operators,

essentially by inventing the method of completing the square for each

such equation. No solver used this method in the study. Instead,

either of two methods which do require a strategic adjustment and

special operators were used. The comoner method is factorization,

in which the equation is put in the form (ax + b)(cx + d) = 0, and

then split into two equations, ax + b = 0 and cx + d . 0, which are

then solved separately. The other method is use of the quadratic for-

mula, in whLch the equation is placed in the form ax2 + bx +_c = 0 and

the roots are obtained by use of a formula in a, b and c. Table 4.3

shows the frequency of use of these two methods for the Session 1

equations. Cases are included whether or not the method was success-

fully completed and whether or not its use depended on an error. For

example, equations 6A and 6B are not quadratic equations, but by error

the: were 5omet1mes turned into quadratics. As can be seen, only five

students used the quadratic formula. Of the five, three were among the

top ten solvers, and two among the middle 14. Four of the five were

members of the more experienced screened group.

.Table 4.3

Frequency of use of methods for solving
quadratic equations in Session 1

Factoring

Quadratic formula'

Ca$C5 Students

48 26

7 5
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Both of these methods requireipecial handling. in both, the

equation must be put in a form with zero on one side,-1ibile normal

strategy for linearequations would often result in a non-zero,con-

stant on the opposite side from the terms containing x. Further, both

the splitting operation and the use of the formula would have to be

specified by special operators

Strategy, difficalties Some students appeared to have trouble select-

ing an appropriate operator to apply. In the Bundy scheme, such diffi-

culties would reflect flaws in the control,structure that sequences the

phases of:the solution process.

Table 4.4 collects cases in which students isolated one occurrence

of the Unknown when there was another occurrence that had not been

collectsd, the many cases in which'they occurred for equation IA,

the difficulty was probably brought on by inability to recall the

correct colkection operation.

\,

IA S5,56,S12
S13,S15,S20
S21,522,S23

15 SP5-,S18

7/4 515

Table 4.4

Premature IsolatIon

Aaip+prt--4p expr or
-p expr

whve expr includes p

2.xakxZ---*x expr, where expr
includes x

x-2 x.4.11=14 --L=Ivx..14,1(x+t)
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Table 4.5 shows dithculties associated wit'h the transition be-
.

tween.the strategy of separating unknown terms from constants, which, is

appropriate for linear equations, and the strategy of gathering all

terms on one side with zero on the other, which is appropriate for

quadratic equations. the moment of decision is shown in the first

case, S6 6B. The remaining cases under the "quadratic" heading are

failurts.to set equal to zero at the appropriate moment. In the first

two, E4 and S12 4B, the solvers did go on to do this,. In the re-

maining cases S7 4B and S16 4B, the solvers did not, but instead used

invalid operations to "solve" the problems. So these solvers may not

have made any strategic distinction here.

The cases under the heading "linear" are ones in which the "s t

equal to zero" strategy was applied to linear equations. This is not

mathematic:11,14 Invalid, assuming it is done accurately, but it does

involve unnecessary steps. In the first example shown, found in the

work of two solvers, setting equal to zero is followed by factoring,'

as it might be for a quadratic. Again, this is mathematically valid,

but of questionable value. The move might be wortNahlie if it allowed'

. /
the correct conclusion to be drawn about the role of y: that if y is

zero than any value of x satisfies the equation. Neithei 5tuden4 drew

that. inference, though $13 did get as far as "I'm not sure about this

right here but I think you can get y equals zero and tht.m,x plus z plus

two equals'zero" before abandoning the problem.

Tible 4.6 shows some more-dramatic failures of strategiC'control.

in each case, an earlier error resulted im the elimination of all

occurrences of the unknown from the equation. A strategy that aimed at



Quadratic

16 68

E4 48

S12 48

S7 4B

S16 48

Linear

S3, 4A
SI3

SI3 28

S13 5A

SI3-78

Table 4.5

Strategy shift between linear
and quadratic equations

x2+4x+4-1

/-

2x+3 9(2---431x2-2x

2x+3=x2___4x2-2x..3

x2

2x+ 3m.x2----42x+x2=3

xy+yz.2y--4xy+yz-2y...0----0

+

y(x+z-2)...0

1 1 1 1

+ --> + +y z x y

5x+25400x -100 --40-5x -125

6(x-2)-3(4-2x) x-12---*

6x-12-12+6x -x+12 0

37
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"I'm trying to figure out
if you can carry'it further.
I don't think so. I bring
the four to the other side.
I get x squared pith four
oh ah, you could bring the
one to this side so it'll
be equal to zero."

"get the x's together"
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collecting and Isolating the occurrences of the unknowh should have

signaled trouble immediately, but in all but one of these cases the

students continued to work for some further steps. In the first case,

S21 2C, it appears that the solver lost track of the left-hand side

of the equation, zero, and interpreted the purely numerical expression

obtained when the x's were cancelled as an expression for the answer.

In the remaining cases the solver abandoned the equations . hen they

were simplified. In the last case no simplification was nAded after

the.elimlnation of p, and the solver simply proceeded to the next pro-

blem.

S21 2C

Table 4.6

Working with no unknown

-2-3x _4-2 3

3-x 3 T

$20 3B 7(i4x-1) 3(4x-1)+4-4
7.3(l)+4
7..3+4

S20 5A

I.

S20 IA
LI .211 -1' ,rt

P P

x goei into negative

x goes into, x goes into that
3 times minus negative two over
three. i'm destroying this pro-
blem I think. And just set that
two over three make it two thirds,
and that's.negative eleven over
three. I don't know how. That's
what I got." stops

No comment

Comments unintelligible

"That's about as far as it goes."
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Just as having toe few unknowns leads to trouble, so does having

39

too many. Table 4.7 lists cases in wttich,students proposed solutions

expressed inttrms of the unknown'. As indicated in the table, in some

cases there i s ndication that the solver is disSatisfied with the sorg

ution, but the table does not include cases in which the solver stated

clearly that the last equation they reache did not give a solution.

. It seems likely that at least some of the solvers epresented in the

table do not clearly grasp the fundamental unacceptability of solution

0 terms of the unknown; they may be influenced by the similarity in

form between these solutions and correct ones.

Proper handling of equatiom containing fractional expression re-

quires an addition to the normal strategy that is not present in the

Bundy model, it may happen that a number or expression obtained by

normal manipulation as-a root of an equation renders the equation un-

defined when substituted for the unknown, because of division by zero.

Such a number or expression is r5t a solution of the equation, since

it does not make the sides of the equation equal when substituted and

is called an extraneous root. So in sbiving equations containing

division by.expressions containing the unknown, it is r'.ecessary to verify

that any putative roots do not create this problem. Table 5.14 shows

the equations used in the study for which this issue arises, and the

subjects Whos,e solutions included extraneous roots. As can be seen,

many solvers do mot perform the needed check. They may identify the

goal of obtaining solutions to an equation with the slightly different

goal of obtaining the resuits of normal manipulations.



4o

Table 4.7'.

Solution containing unknown

SI 19 x
2

"I guess that's simple enough.
2 It's not really but that's the

best I can do."

A53 IA P "Am I supposed to get that p outprt
of there? I don't know."

S5 IB x 1. x2w
T Comments not recorded

,

513 IA L. "That's as far as 1 can go since
rt -P P

there's no number values for any
of these variables."

5I3 20 ac-cbx-cb-lw x No comment

S13 1E b-x
RN E: "Is there a rule that you can

X
a

give me for knowing when
ished with the problem,

I'm fin-

or what?"

S16 5E X2 'X

I
x2 . ix

S18 19 x

S22 lA A-prtiv

S23-29 x2 x2 x7
r , y z.

S:"Ok, well there's. I can't think
of any way to get rid of this x
over here so it would just have to
be..." tries othqr manipulations
which do not get rid of the other
x "So as soon as you get x on
one side, that's that's about it."

E:"If I could get rid of that should
I try to, or what would you say
about tSat?"

S:"Yuh, that's what 1 try to do at
at first. To get rid of the x on
the one side. But I couldn't,
couldn't see."

"x squared would be one half x.

I'm going to leave that as my ans-
wer". Later: "I had x2, but the
answer denotes x, so it would have
to be-half of x2"

No comment

No comment

"real dumb answer."

,r

1



,

The strategy pursued by the Bundy model is largely a direct

translation of the demands of the solving task. It is necessary to

eliminate all but one occurrence of the unknown, and it is necessary

to isolate the single remaining occurrence. ,The model's strategy uses

these necessities to organize the phases of the method. In light of

this, it is not surprising to find some agreement between human per-

formance nd the behavior of the model. It is more surprising to find

greater greement in the performance of better solers, though as noted

above this is probably due only partly to differences in strategy itself

-between better and poorer solvers, since some contribution is made by

spurious operators available to-poorer solvers.

The common departures from the ,Bundy strategy are interesting. It

appears that clearing fractions and removal of parenthesesare important

operations. This suggests that human solvers may to some extent use a

canonical form in the solving process, a form free of fractions and

parentheses. This could also explain why repeated subexpressions were

rarely used: they-disappear when-the problem is canomicalized.

Another departtre is in the handling of quadratics. Unlike the Bundy

model, it appears that human solvers need at least,two strategies, one

for linear and one for quadratic equations, with a means qf selecting the

appropriate one.

The difficulties students have In strategy seem broadly to be what

one woUld expect when one al;-;ws flaws In the Bundy scheme, except that

some of the flaws seem very fundamental. Jt is remarkable that some

students continue to do algebra as usual after the unknown.has vanished,

and that.others propose solutions in terms of the unknown. A lack of

krkowledge Of the goal of equation solving is implIcit in such performance,

and it would be interesting to know if exp)icit, instructton would help.
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CHAPTER 5

Analysis of Errors

The Bundy model is a model of correct performance, but it never-

theless provides the basis for a theory of errors. Errors would be pro-

duced if incorrect operators were placed in the operator store, if cor-

rect operators were applied where their conditions of applicability are

not met, or if,the actions called for by an operator were not fully or

.accurately carried out. We present here a tabulation of the errors ex-

hibited in the study, separated into three categoriA: operator errors,

applicability errors, and execution errors. Within each category an

effort has been made to LAlect errors that share various more particular

charadteristics.

Many errors could be assigned more than one origln. There is no

obvious way to distinguish the application of an incorrect operator from

the imperfect execution of a correct one, for example, on the basis of

an isolated occurrence. The reader should therefore attend to the errors

themselves as much as to ttle classification, treating the classification

as a suggestion concerning mechanism behind the error that might be ex-

' plored more fully. Also, the grouping in many cases reveals a pattern

of similarities among errors that may be 'important in identifyin§ mecha-
.

misms.

Operator Errors Table 5.1 shows a collection of errors'which involve

the Oeletion of elements from expressions. Thi;eathamatically valid

operattens4which these errors apparently Approximate ai-e subtraction from

-both sides of an equat:on, division of both sides,simplification of quo-
),

42 c-,)



Table 5.1

14 3

Optor Ereors

Group 1 Simplification of quotient;

Si IC

SI 1E

SI ID

55 5B

2kw +2h (k+w)
h-

2kw + 2(k+w)

x + ax
---4 x+x

a

2x
2

- x 2
x -x

2

1-x
2

x
1

1-x'

S5 5A x-10
x+5

---t -2

S5 5D

r+7.x T

S16 5E dx2 4. (x4.3) x2

S20 5E 3 (x+3) " 3

SI6 51) 8x

2 2+x x
2+x

S20 5A -10

x+5 5

g 4 S20 48 x+3+X X+3

x

S20 58
1 A

1-x

I-A 1

S20 4C

S20 4E

xy+yz+xz
--4y + yz + z

ax + bx + ab
a

S20 4E1 2x 4., 2a

a

E4 55



Table 5.1 continued

S20 6C x2+2x+1
---)x

2+
x+1

2

S22 5E x
2
+x+3

x2x+3

516 5B

S20 6D
sli 6p

1 -x2 2
x ,

x+2(x 2)
x+2 x+2

S20 5B 1

1

S5 6E x+2

--472x

S5 lA
0

Group 2

520 5D

Simplification of quotients with variants of
deletion operator replace null numerator by
zero instead of I

if numerator is null, result is denominator

,S12 40 bc .--4
-abc

S1,. IC

S20 4B

02 IA

, replace s by 1 when it appears as a term in a
sum

1

1+3

p-A -prt--, (7) p-A -prt
P

1

.

-rt

replace s by 0 when it appears as a factor of
a product

4:1+
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S15 1E

S5 50

5A

S16 56

S21 5A

S20 7B

SI 4A

S22 5C

S5 IA

45

Table 5.4 continued

a

treat x as x

x-10
x-2

subtract s from terms containing it

12x-24
---) x-12

(3+x)x
2+x

1+x

perform deletion only on numerator

art

when deleting a power from a term with a lower
power as a factor, subtr,ct exponents

S7 48 2x
1

+3

x2

Group 3

$17 3E

S20 38

516 4E

-1 2x-1 +3

deletions from both sides of an equation

2(3+x) . 4(x+3)-1----.1x+3.2(x+3)-1

7(4x-1)3(4x-1)+4-----,73(1)+4

a
2
+ b

2 + x 2
m, 2x + 2a

a b2



S20 7A

6A

S22 15

46

Table 5.1 continued

x2_x -2 . 14 2

-72

2 2 4 2
x

x2= 2x--)x=2 Comment:"could I subtract
an x from these ones"

6B x+2(x+2(x42))=x+2--x+2(x+2)=0 Commentsubtract"

48 x2-43.4.x

75 12X x+I2
----4 x

12 12

S22 6B
E4

El2
1

S5 65

NI

x+2(x+2(x+2))...x+2-4 x+2

(x+2)(x2+4x+4)..x+2--4 0"...X2+4x+4

Group 4 Deletion from one side of equation

A
S3 IA Amp +prt-4

prt P

S18 lE x(a+1)=b---4x=b-a-1

S16 lA A=p+prt---4(rt)A = p+p

S22 6A x+2(x+1)=4---+x+1 = 4(x+2)

S22 5D (442/x) = 7--9 2/x) (a_ . 3
2+x 2+x

Group 5

S22 4B

SI6 4A

E2 7B

Subtraction

x
2 -x---)x

z

-2y

6x-,1/2P-1/46x x-12 ---411x=-12
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tievs, and subtraction, As figure 5.1 shows, all of these correct

opellations do produce'deletions in common situations. Inspection of

the errors suggests that students identify these correct operations

with a single generic deletion operation which often produces in-

correct results. ,The following is a tentative description of this

deletion operator and its use.

Figure 5.1

Some legal operations producing deletions.

x+a = b+a x

-a -a

ax = ab x = b

aX

a

b

x+a-a).x

The deletion operator transforms an expression e by deleting a

specified subexpression s from it. If the resulting expression has

operation signs which are missing an operand because of the delet.ion,

these signs are deleted. Similarly, unnecessary parentheses are de-

leted. If s is a constant and a constant k=c.s appears in e, the

effect of the deletion of s is to replace k by os.ip e. Figure 5.2

shows examples of the d 1 tion operator in action.

The deletion operation is used to simplify quotients when a sub-.

expression s appears in the numerator and denominator, either explic-

itly or as a factor of a constant. 11.a Simplification proceeds by de-

leting s from the numerator and from the denominator. If the resulting

numerator and denominator are both nonnull, the result is their quotient.



Figure 5.2

Examples of deletions
,

delete h from 2kw + 2h(k+w) : 2kw + 2(k+w)

delete x from x-10 : -10

delete 5 from -10 : -2

delete x from 2+x2 : 2+x

delete 2 from 2+x : x

if the denominator but not the numerator is null, the result is simply

the numerator. if the numerator is null, but not the denominator,

the numerator is replaced by 1. If both numerator and denominator are

null, the result is zero. Figure 5.3 shows examples of this process,

Which can produce the first group of errors.in Table 5.1. As shown' in

Figure 5.4, the procedure also correctly handles some simple;examples.

Some errors call for variations of the scheme; these are indicated in

the second part of Table 5.1.

Figure 5.3

'Use of deletion to simplify quotient

delete x from numerator:, -',10

delete x from denominator: 5

4

delete 5 from numerator: -2

delete 5, from denominatoY: 0

denominator is null, so result is
numerator: - 2

48



2+x

Figure 5.3 continued

delete x fr.om numeTator: 8

delete x from denominator: 2 + x

delete 2 from numerator: 4

delete 2 from denominator: x

result: 4/x

delete x from numerator 0

delete x from,denominator: 2

1

numerator is null, so replace by 1

result: 1/2

Figure

Examples for which deletion operation correctly
- simplifies a quotient

ax
x

a

(shows deletion of a and droOping of null
denominator)

i x

..._.
x 1 (shows ne.ed to replace null numerator by 1)_
ax a

The same deletion operation may be used to transform an equition,

if a subexpression s appears on both sides. The procedure is to delete

Loe

s frgrisach side, replacing the side by 0 if it is null. The third

group of errors in Table 5.1 is produeed by this procedure,while the

fourth group calls for the indicated variations.- As in the case of

simplification of quotients, this solver ,does transform some equations

correctly, as in Figure 5.5.
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Figure 5.5

Examples for which deletion operation correctly
simplifies an'equation when applied to both sides

ax ay-->x y

x

Another case in whiCh deletion may be used arises when a sub-

expression s is to be removed from one side of an equation, but does

nOt appear on the other side. Here 5 can be deleted from one skle,

but must be subtracted from oi'. divide out of the other side. It is

not clear how the choice of subtraction or division is made in such a

case. kxamples of errors which may arise in thi's way are shown in

the fourth group of Table 5.1. Note that the last errors in this group

involve a multiplication done on the other side rather than A subtrac-

tion or division.

The final group of errors in Table 5.1 may resuit from the use of

deletion to carry out an indicated subtraction within one side of an

equation.

Table 5.2 illustrates a constraint on the deletion operator stated

by one subject. The subject indicated that cancellation could not be

used to simplify either quotient because the entire denominator did not,

appear in the numerator.

S5 5E

55 5E

11;
Table 5.2

Examples with cancellation blocked

x2+ (x+3)

x3 + 3

3x + 9
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Another constraint 19 shown in Figure 5.6. jwo excerpts from

the protocols of the same subject are shown, in which the subject
^

states that items cannot be cancelled unless they are multiplied.

Figure 5.6

Examples of Erroneous Cancellation

Cancels h's

Sl. IC A . 2kw + 2h(k+w)

SI 6D x+2 (x+2) 2

x+2

E: "How do you know when something
cancels and when it doesn't like
that?"

S: "Ok, if it's in the, if it's in
the denominator, if it's on the
top and bottom. Then ah, and if
it'viNltiplied, if it's added you
care't d4 Like if I had a w
there (points to second w) and a

w down here (points to denomi"nator)
I couldn't cancel that w out
(points to second w) but I could,
cancel that one (points.to just w)"

E: "OK"

"Because that's multiplied and not
added."

S: "Well, if i treat this as one unit
right here (points to second x+2
and puts parentheses around denom-
inator) I could -ancel this out

' (Points to secono x+2 and denom-
inator) because that's one unit
(points to second x+2) that's be-
ing multiplied by another unit
(points to first x+2) right there.
(Puts parentheses around first
x+2.) Since they're all the same
you can do that, I guess, and then

. that would still apply to my rule,
. . you know, you've got to be multi-

,.

plying."
(

'-----/

,This restr4ction avoids many siMple erifors, like transforming (x+a)/a

to x, but this may ictilaltly'be unfortunatio Once it makes the invalidity
,.
$.

of the operator 1 s likely to be spotted. It is interesting that this
,

,sk
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constraihed oPerator is qui,te a reasonable guess at an operator that

transforms ax/a. to x but does not transform (x+a)/a to x, and illus-

trates what might happen in learning from a few examples.

Transposition errors Table 5.3 shows some errors, all from one sub-
,

ject, that involve an erroneous opd.ration in moving elements from one

_side of an equation to another but seem not to involve the deletion

operator. In the first three examples a term is subtracted from the

side of the equation where it Is found, thus deleting it, and is added

to thf othe side. The last example, Problem 7B, follows this pattern

in handling of the erm x, but not in the handling of -24.

Table 5.3

Transposition errors

S16 38 28-X-- 11 = 12x - 3 ----3 40x,- -14

si6 6B

S16 3A

S16 78

7x + 8 = x + 2
,

+x -x

.8x4 = 2

9x+360 = 5x+200----4 9x+5x = 360+200

12x-24 = x-12 ---# I2x + x = 24 + -12

Recombination operations Table 5.4 shows errors involving the rel"

combination of elements of two or more terms. These errors may arise

from an interpretation of addition and multiplication in which both

represent a generic combiningnoperation. For example, x+x, 2x, x.x,

and x2 may all be thought of as combination of two x's. Since many

different expressions are given the same interpretation in this way, it



55 5E

S5 5E

S16 4A

S16 IA

S16 49

S16 5E

$16 5E

S16 4E

S22 4A

S22 4c

S22 4D

$22 4E

53

Table 5.4
e

Recombination errors

x2 4. x 3 + 3

-3x 3 + 3x ---*-3x

y + yz--) 2yz

P+P--4 P
2

2x 4- x2-43x2

x2 + (x+3) 2x2 + 3

"x is one half of x
211

ax + bx + a2+ b2 + x2

y + yz x+2yz xz + 2y

xy + yz + xz___.4x2yz ---4 x 2 2Yz

bcx + acx + abx + abc ----> 3 abc + 3x

ax + bX + ab---4 2a + 2b + 2x
r"'

is possible to rearrange the elements of an expression quite freely

without changing its interpretation. Figure 5.7 shows how some of the

errors in Table 5.4 can be produced.

Figure 5.7

Recombination of elements of expressions

x
2
+ x + 3 ----4 "two x's" and "one x" and "three"

----4 "three x's" and "three"

3

y + yz ----4 "one y" and "one y" and "one z"

"two y's" and "one z"

----4 2yz



Two subjects mentioned restrictions on the possible recombinations.

rearranging ax + bx.+ ab as a2 + b2 t x2, the subject notti, "Ok

wt you're doing here is you're multiplying all three of these things

together; the a to the x, the b'to the x, th&a to the b. So it's a

case of multiplication not a case,of addition. An x plus an x would be

an x squared instead of x + x, and a times, an a wobld be an a squared, 41)

and a b times a b would be a b squared. But if this was a plus in here

(writes plus between b and x in original expression) instead of multi-
',

plication then you couldn't do this." The suggestion mpy be that elements

which are -ecombined into products should have appeared in products in

the.original expression. Another subject, asked to explain a similar

*
recombination, said "I don't really know the rules. It makes it easier

if you combine everything that's the same. You have, like, the same

thing if you're working with numbers and you have 1,1,1 it's just

easier to say three." The same subject had rearranged ax + bx + ab as

2a + 2b + 2x. The response,was, "No, cause here you're multiplying.

2ab is the same as 2 times a times b and here it's all addition." If

the subject means by "here" the rearranged expression 2a + 2b + 2x,rather

than the original expression, this may reflect the same constraint on

products described by the subject above. The subject went on, "No, it's

not anyway. It just makes it easier to keep them separate." In the

context of the problem, the term 2a could be cancelled at the next step,

sp the subject's preference for one rearrangement over another may be

based on that.

Combining Fractions Table 5.5 shows errors arising in adding or multi-

plying fractlohal expressions. Most'of the operators apparently. employed



S 6C

Sit.; 5D

S16 7E

Table 5.5

Errors in combining fractions

x x+I x+x+I
2 2

4(x(2+x)+2(2+0(x2)
x(2+x)

S16 5D 4 2 8

I

'S22 2D c7- b 1

k
+ _

1 c

S22 2C 1 4. 7 1

-7 3-x'--4 3-x

S16 28 1 1 I 3+ +
x Y -2- ----.) ii:4T-4-z

s

S22 2B 1

1 + 1_ +
7x z xyz

S20 2A
S21

1 10

involve suboperations and patterns of operations that are seen in

correct operations on fractions. These elements are shown in Figure

5.8, which also shows,how they can be incorrectly assembled to form

operators that produce some of the errors in the Table. In one case,

a student who combined 4/1 + 2/x to obtain 8/x said that the operation
,

involved was "multiplication of fractions", and said that it was only

appropriate when fractions were to be added. Here the entire correct

operation for multiplication is carried over for use in addition.

55



Figure 5.8

Elements of correct operions on fractions

aA c form common ad bc sum of numeeators ad+bc---4
b d . denominator E7f denominator bd

product of numerators
product or denominators

56

* Note that this is 2 component-wise operations; the.indicated operation
is performed separately in numerator and denominato.r.

How these elements oay be combined to give errors.

x x+1 sum of numerators x+x+1
T 2 -----4 product of denominators 2

(4+2/x) x form common
\ ---7

(4(x(2+x)) 4. 2(2+x)) ( x2
2+x denominator )

x(-2+x) x(2+x) x(2+x)

\
\

)
combination of.numerator under indicated operations

-1r
denominator

(4(x(2+x))+2(2+x))(x2)
x(2+x)

component-wise subtraction x 7-x+3
1 x I-x

4 2 product of numerator . 8

1 x product of denominator

A possible related family of errors Eis shown in Table 5.6. These

may be seen as the result of inverting the component-wise addition of

fractiors.seen in some examples in Table 5.5.

Table 5.7 shows two errors from one subject which may be,related

to the errors in combining fractions just discussed.' In each the sub-

ject inverts one fraction of a sum. This operation may be based on the

invqrsion used in the common method of dividing fractions. This inter-



S16 5C
520 5C

S21 5C

t

Table 5.6

Errors in decomposition of quotients

x2I-----43+x

7 7-(x+3) 7+x+3

S21 2C

S22 5B

57

Comment "negative x into neg-
I-x ative x gives positive

-2-3x -2 3

3-x 3

pretation is supported by the fact that the second rearrangement was in

fact transformed to x/7, which is the product of the tWo fractions after

inversion. This follows the division procedure, except that the second

fraction would be the one inverted if the a/bk c/d were used.

\

S22 2A

-Table 5.7

inversion errors

1 + 1 1 7

x 7

1 1 x I+ +
x 7 T 7

'4*

Cross-multi lication The correct cross7multiplication operation trans-

forms an equation of the form ieb cid into ad bc. Errors involving

this operation are shown In Table 5.8. It appears that the operation is

sometimes used,on an equation but altered to produce a fraction as a re-



S1 5A

SI 58

55 2C

2D

S5 6C

S1 2A

SI 2A

S20 6E

Table 5.8

Error involving cross multijolication

1 x-10 x+5

-2- -7 2 (x-10)

I-x2 2 I-x 2

I -x

22 66 - 22x - 49

(b. 1+1 Pt' a (lb+17)

x+I (11) = 1

1 1

+ 7+x
x 7

1 ... 1 x

x 7 /

-x -6 x2 -8 -6

tomments: says is cross
multiplication

comments: begins,to, cross
multiply and
writes 2x+2
before,,remarking
"can't have two
equal signs"

.7-7;

suit, perhaps by analogy to other operations on pairs of fractions, and

may also be applied to a sum, difference, or product of fractions rather

than to an equation, again by analogy to other oPerations on pairs of

fractions. in both situations,-the cross-multiplication operation yields
A;

tw
y

o terms, ad and bc, which must be used to Om Nrresalt, so one
IF°

might be us'ed as numerator and the other as denominator as in SI 2A and

$5 2D, or they might be combined using the indicated operation on the
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original piir of fractions, as in $5 2C and 'SI ZA. Even when the oper-

ation is used correctly to transform an equation to an equation trouble

is possible if the conditions of application are too loose, as shown in

the last example in the table.

Errors S5 2C and SI 2A are examples of what Matz (1979b) has called

the "Lost Common Denominator Bug." We include them here because, as

indicated abo a, they could result from the adaptation of cross multi-

plication as an ( peration that combines pairs of fractions. Case S5 6C

seems to indicate this possibility quite clearly, since the solver was

using the cross multiplication operator on two fractions that were multi-

plied, and stopped when the operator generated an extra equals sign. In

the earlier case S5 2D the cross multiplication was completed.

Matz attributes this error to partial execution of th addition of

fractions operation. Our analysis of course does not mean that Matz is

wrong, since the same surface form can have many origins. Our analysis

does, however, complicate efforts to pin down the origins. Specifically,

Matz suggests that a reduced incidence of the error when adding numeri-

cal fractions would favor the partial execution explanation because the

processing load would be reducedfor this simpler problem. But subjects

have probably never applied cross-multiplication to purely numeric exam-

ples, so the frequency of erroneous use of cross-multiplication would

also presumably be less.

Splitting equations with fractions Table 5.9 shows the use of an oper-

ator which splits an equation with fractions into an equation in which

the numerators are set equal and ore in which the denominators are set

equal. This splitting is occasionally va4id, as in the case of the equa-

tion x/(x+l) = 2/3, but in general it is not, since the two equations in
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general do not have the same solution. This use of thi; operator

discussed below, where it is argued that it reflects an eccentric view

of how equation solving works, in which it assumed that a solution can

be obtained by trying to make the sides of the equation match, rather

than by the usual manipulations.

Table 5.9

SI6 5A

5E

Splitting equations

5 x-10

with fractions

5...x-10

2x2+3..x

10 x+5 ----H10.rx+5

2x2+3 x

3x+9 3-9 3x+9...3

4B 2x+3
1 ----4 2x+3=1

SIO 5A 5 x-10 5.-10
10 x+5 ----10=x+5

SI6 58 1-x2
2 , 2

1-x T 2

The reciprocal operation Table 5.10 shows errors resulting when the

reciprocal of a sum is taken improperly. In each case, the error reflects

an assumption that the function f(x) = l/x is linear, so that 1/(a+b) =

1/a + 1/b. This sort of assumption.has been noted by Matz (l979b) in

connection with this and other functions, including square-root.

nivision by zero If an equation is transfcrmed by dividing both sides

by an expression whose value is zero an inequivalent equation may result.

Neglect of this condition on division may result in losing solutions,
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Table 5.10

Errors in forming reciprocals

1 1 1 1+ +
x y z x+y+z

55 2D has 1

= expr but drops the 1/ ,

getting x = expr -1. Corrects this to

1

x = expr -1

510 28 1 1 1

511 28 R y z

512 4D 1 = -a -b -1 11
a

522 2A

1 1 1 1

x -a-b-c
a b c

notes 1 1 1

=-V +

as illustraced in the first group of errors in Table 5.11. Thus the

division operator should carry with it actions besides the division

itself to provide for detecting any lost roots. One way to do this

would be to create two new equations rather than one: a = b produces

a/s b/s or s = 0. The final error shown in the first group is a

subtle one perhaps stemming from such an elaborated division operation.

The subject may have derived a/s = b or s = 0 from a/s = b, whence

it does not follow. This is because if division by s is indicated in

an expression, s cannot be zero if the expression is to be defined.

Group 2 of Table 5.11 shows subjects who lost roots on the equa-

tion 2x = x2, but not by division. These subjects simply noted that 2

was a root, but failed to notice the other root.
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Table 5.11

Loss of roots

Group I Division by zero

lB

E4,E6,E10
El),E13

S7,S10,S13
SI9,

A,
E3,E6,E9,
EIO,Ell,S19

S13 3A

E14 58

2
21mx

(zero is also a root)

9(x+40) (x+40-49.6

(-40 is a root)

9(x+40) -5 (x+40) -4 9-(x+40)

5(x+40)
1

) 9
5

.

(L0-x

Group 2 Solution by Inspection

63

Comment: "cancel these,
1-x by I-x. If 1-x

is equal to zero, and
x=1. And the other
answer would be..."

IB

E7,S12,S20
2xicx

Splitting fActored qpadratic equations Table 5.12 shows two errors,

from one subj

l

ct, in which the operations for solving a quadratic equa-

tion by facto ing are closely follow--'. In the key step shown, however,

the studen splits the equation into two without having first placed

it in the form expr se 0. The splitting operation, as used by this sub-

ject, lacks an essential check on its application.

Square root Table 5.13 shows some errors associated solving equations

of the form x
2
-, expr. The last two examples may simply reflect a choice

of only one root, and so may belong with he ss of root errors just



discussed, but they may also be related to the puztting error of 'the

same subject on Problem 5B.

S7 53

Table 5.12

Splitting quadratic not equa N to zero

x(x-2)w-2-----4 x w.-2 or x-2 -2

57 43 x(x-2).9 ----+ x = 3 or x-2 , 3

S19 13

Table 5.13

Errors associated with square root

2x ±2..x

S16 53 x
2

211 2 ---4answer is -1

S16 43 x2 i

s16 43 3x2 = 3 -)x =

comments: "but this
squared so it co
plus or minu

64

Extraneous roots It may happen that a number or expression obtained

by normal manipulation as.a root of an equation renders the equation

lindefined when substituted for the unknown, because of division by zero,

Such a number or expression is not a solution of the equation, since it

does not make the sides Of the equation equal when substituted and so is

called an extraneous root. So in solving equationsinvolving division by

expressions ,..ontaining the unknown, it is necessary to verify that any
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putative roots do not create this problem. Table 5.14 shows the pros-

lems used in the study for which this issue arises, and the subjects

whose solvtions included extraneous roots. As can be seen, the false)

assumption that the results of algebraic manipulations are always

solutions is widely held. Subjects may identify the goal of obtaining

solutions to an equation' with the slightly different goal of obtaining.

the results of normal manipulations.

58

E1,E5,E6
E12,E13,E14
S6,S10,S11
S12,S15,S19

Table 5.14

Extraneous roots

1,!-x
2

at 2
1--x

510 5D (44-2/x) (+xx). 7

extraneous root 1

extraneous root --0

Arithmetic errors 10Sle 5.15 shows errors which seem to involve simply

-

incorrect arithmetic on unsigned Dombers.

S15 38

S2I 38

55 2E

1.4

Table 5.15

Arithmetic errors

"eleven minus three nine"

7(4x-1)--* 21x-7

(2) - 6 . 5 multiplying



Operator,vos Just as invalid operators might be imcluded in the
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operator store'in the Bundy model, so might valid operators be missing.

As would be expected from this, some solvers seem to lack certain oper-

ators, and sehave trouble when they reach a point in a solution where

such an operator is needed. Table 5.16 collects cases in which solvers

abandoned work on a problem or backtracked to an earlier point in their

solution, when a legal operator exists that would have permitted pro-

gress towp-ds solution. In these cases it is pl-ausble that the solver

lacks the needed operator, though it is also quite possible that the

solver knodws the operation and actually considered using, it but decided

not to. Where this latter possibil'Ity is suggested by the solver's

comments the case is not included in the Table.

The cases in the table are grouped according to the operator that

is not used. The firct group involve the inversion operator: the solver

46

transforms the equation to the form 1/x = expr, where expr is free of x,

but cannot finish the job by putting x = l/expr. Actually, the lack of

this operator probably is more ipmmon than these examples show, because

only cases in which solver found no operator to use are included.

Some subjects transformed 1/x = expr to 1 = expr to x = 1/expr, and it

is likely that 7ome of these did not have the inversion operator avail-

(

able,

The second group of cases involve other expression; with x in the

denominator. Here is seems unlikely that the solvers do not possess the

needed operator, multiplying both sides by the denominator, but rather

that they 'do not use it. Such,difficulties could be described in the

Bundy framework as improper labeling of operators: the multiplication

4
operation needed might not be marked as useful for isolation'or attrac-



Table 5.16

Operator gaps

Group 1 Inversion

S6 28 -1 -yz+Az+Ry
Ryz

S12 2B xyzR
S21 2A 10 . 1

21

S23 28 I 1 1 1

x R Y

Group 2 Other cases with x in denominator

SI 48

SI 28

S16 28

521 58

2x+3

x2

1

x+y+z,

28 1

-FT x y z

Group 3

$3 IA

SS IA

S5 IA

SC. IA

Dead ends

A

prt r

p ELL
A

-p -A+prt

-A+prt.

not attempted

not attempted

not attempted,

soi-cing for p in Ap+prt

67



S6 1A.

S10 IA

S13'1A

S16 IA

S2I IA

Group 4

Table 5.16 continued

Ap(rt)

A -prt

gr P
rt

rt(A) p2

-p.9)rt-A

Collecting terms

S3 26 xyz Ryz Rxz Rxy
Rxyz Rxyz Rxyz Rxyz

$1-5 2B xyz xzp xyp pyz

Group 5 Quadratics

S3 5A 50x (x-20) 6250

S3 48 x2 (2x+2) . x2

S5 7A x
2

-x -16 0

S15 16 V .. x2-2x

S20 71 x2 x - 7

S20 61 X
2
tX 2

68

Comment: "That's all you
can do to that. You
can't add them'. None
of them are alike."

Comment: "I don't really
see how you can reduce
that anymore."

S22 71 x
2
-x-2 14

S22 6B x+2(x+2(X+2))..x+2--4x+24-2).4 (ster spoken, nit written)

S20 68 x+2(x+2(x+2)) --+ Comment: "I can factor this
back down but that

x2+4x+4 1 wouldn't JO me much good"

0.4 -.4



Group 6

S5 4B

S6 1B

Table 5,16 continued

Other gaps

2 x1-2 +3 = 1

x
2
-2x ). 0

69

Comments: "I'm not sure how
to get rid of a nega-
tive exponent so I

won't try." ,

Unable to factor to get
constant term zero

tion. In fact, the multiplication needed in the firstcase in the group

is not marked useful for attraction in Bundy's tentative list of oper-

ations: perhaps human solvers have the same lack.

Group 3 collects dead ends reached by solvers on a single problem in

which the key step is transforming p + prt to p(11-rt). As can be seen,

this step was difficult for many solvers. Some never succeeded, and

others succeeded only after considerable exploration. Two interesting

solutions are shown in Figure 5.9, As with the multiplication operation

discussed above it is doubtful how many solvers really lack this factor-

ing operation. The difficulty may ,be in perceiving that it is applicable

to a sum of terms in which one has only one eZplicit factor: I must be

seen as an implicit factor for the ordinary inverse of distribution to

be applied,

Group 4 shows a few cases in which solvers were unable to collect

terms, The comments suggest that the solver may have been looking for

a common factor of all the terms, and failed to consider combining only

a ,-ubset'of the terms, as is actually needed.

Group 5 Ittow-sq.gadratic equations abandoned by solvers. It does

not iaclude c6ses in which factorization or use of the quadratic formula
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Figure 5.9

Two solutions for p in A.p+prt

S6 A. p+prt

S;"You want to get this p
-p -A+prt (points to second p in

second equation) over .there
(points to -p) somehow but
this A doesn't have p in it.
what you might do is go
ahead and leave this A over
hczji

A-p.prt writes 3rd line
"and you'll have prt'so that
way you can divide. I No, that

still won't work." '

A.p+prt rewrites orlginar problem
"Oh how dumb. A . ok go ahead
and factor out this p here
while it's on this side since
they both have p's in them

A.p(rt) and you have p times it, oh
wait a minute thatls wrong"

A.p+prt rewrites original problem
"OK you want to cancel out

A.p(l+rt) this p so when yoU do you'll
have a one left here" solves

S11 A.p+prt

A . 4.
prt S."If you divide both sides by

P.

P P p p you'd get p over p leaving
A over p equal to l+rt. Then

A 1

l+rt (A) dividing both sides by A".
AJ P add 1/A to both sides

"would give you one over p
1 l+rt would' be equal to one plus rt

A over A. Um, distressing,
going to cross-multiply, would

p+prt.A give you p timesl plus prt,
what I originally had, make
that equal to A. But this is
factored now into these two
components and if 1 just want

A the p P divide by one plus rt,'

P T717 divide both sides by that and
that would give p equal to A'
over one plus rt.
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was unsuccessfully attempted, but only those in which there was no

indication of a next step. A partial exception is Ole last one. The

solver does apparently considekfaabring, but decides against it be-

cause it wot2,144simply undo the multiNcation just performed. This

s,yggests that at the 4ry least the solve?. is missing the "set equal

to zero" part of the procedure of solution by factorization and that

if solution by factorization were available at all it would have been

used before multiplying out; when the equation was in factored yM,

except for the zero. Also, factorization was not attempted by this

solver in two other cases included in the group.

Applicabilit errors Errors can result if a correct operation is

applied to an expression or f,quation that does not satisfy its con-

ditions of application. This could result from faulty checking of

thAe conditions, or from improperly interpreting the syntax of an

.-
expression.or equation. Table 5.17 shows some errors that may arise

in this, way. The first group involves treating a quantity'A if it

were parenthesized, either in a division operation or a multiplication.

Note that often a subject misanalyzed only one part of an expression ,

P when two analogous parts were present. In the expressions shown with

2 parts, ipne misanalysis allows a cancellation and another forces

distribution of a binomial. Of these, the first is much more common,

suggesting that the prror may not arise from misinterpretation of syntax

but from use of an incorrect deletion operation, in these cases,

The second group of errors in Table 5.17, all from a single subject,

Involve the interpretation of fractions In which x appears as a factor

of the denominator. Asked to explain operations which transformed 2(1/2x)



"7.7:

72

Table 5.17

Applicability errors

Group 1 Misinterpretation of grouping

El,Ell

S6,S18,

68

^S5 68

$8 68

f t

x+2(x+2(x+2)).x+2---)x+2(x+2)1.1--4x+2x+4,.1

x+2(x+2(x+2))---)(x+2) (x2+4x+4)

4

x+2(x+6)---+(x+2)(x+6)

S12 x+2(x+2(x+2)).x+2---tx+2(x2+14x+4) x+2
S20 68

Sil 68 x+2(3x+4) x+2----)3x+4.0

S5, S6 x+2 x2+3x+2
S11,S20

6A

'S22 6A

Sil 6C
S20

S20 6E

55 7A

S22

S20 7A

S6 7C

S13

Group 2

S5 2A

S5 .:,S213

+ 3

x+1

(x+1)__x2+2x+1
2 2

(3 x)3+x---)940x+x2

x-2(x+1)---)x
2
-x-2

x-2(x+1)

x-2(x -2(x -2)) x-2 ---)x -2(x -2)..=1 ---*x -2x+4..1

21 lx
--)

21x 1

1 1
X

x ix



55 2E

S5_50

Group 3

S3 3C

Group 4

E4 6B

Table 5.17

2 (21)H---+ x

2
2x

continued

-120+7 --) -127

x+2x+4 0 ---4 xm
-244-(4)

2

a.

(4)
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S: "not sure whether this
-x stands for ong half x"

..s

to x, the subject said, ",'m not sure whether this x stands for 112x

1
or whether it's one over 2x but I think that does not make a differencft,,

1 think x applies to the whole term before it." The next group of

errors in the table may arise from the application of a SubtractIon

operation to a part of an expression that is not a subexpression of

the expression.

.The final error in the table may result either frona misinter-
.,

pretation of the syntax or from incomplete checking of onditions

for the operator that applies the quadratic form'ula.

Table 5.18 shows two cases in whichffiSinterpretation of paren-

thesesis not implicit in a multiplication or division operation but

is made explicit by insertion of parentheses.

Table 5.18.

Errors In grouping

$5 6B x+2(x+1(x+2))---(xt2)(x+2(x+2))

Si 6D x+2(x+2)----+(x+2)(x+2)
x+2 x+2-
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Execution errors The errors in Table 5.19 may result from incomplete

execution of correct operation. In each case, the possibility exists

that it results instead from the complete execution of an incorrect

operation.

Table 5:19

Partial Executi,on

Group 1 Ditribution

$I 6A

SI 68

Si 7A'

SIG 5D

516 7D

S21 5D

E6 68

Ell,' 5A x-I0
x 4- 5 - 2x-10

Group Errors in setting sign in transposing

El 48 ) 2x42x2-40 x2-2x+3
E2

El2 4B
2

)( L4..i,"42x+,3Mx6.-4x

S12 2A

x 7 x 3 7

S15 4A xy+yz 2y-4xy 2y+yz

2C. 7 2

7 3 7 3-x
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Table 5.19 continued

S22 2E 6 + 7 = 1 - 7

S225A 5x + 25 10x - 100--t5x 10x - 75

Group 2 In arithmetic operations or -igned quantities

E2 58 2-2x-1+x24 x2-2x-1

S7 3E +12-1) -11

S15 5C x2-2x+3...2---i0,x2-2x710;0

S18 3A 4x- -160----)o.40

S13 38 28x-7 12x-3+4---416x+4-4...0

s15 7A 2x+2
S16

In other operations

1_,(2___)(x+1)(x-1)

..(x2-1) -(x+1)(x-1)

1-x x-1

E4 58

7A

E7

£10 58

Group 3 Other operations

S16 28 3 ---> (x) I . 3
r x+y+z

r x+y+z

3
r x+y+z

S23 4E 3(4)+2(2)---,14 S: "So that would oe 12 + 2
which is 14"

S17 28
1 . 1 i _41 1 I I part of a /Series of stepsxyzxyzR

to isolate x
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The first group of errors in the table involve distribution, in

which a needed product is not formed. The second group consists of

errors in which only the sign attached to a result is incorrect.

These may result from incomplete execution of operations in which

the determination of sign is a final step, as in multiplication of

signed quantities.

Factoring Table 5.20 shows incorrect factorizations. in each case the

factorization is 7uch that at least the x2 term of the product is

correctly generated. !n the first Arid last examples the x term is

also correctly formed. In the fo,rth e)$dliple, both terms of the

desired product is generated.r.dad'there are'unwanted x terms. In

view of these facts, it is possible that these errors occur through

incomplete checking of the product. ,If checking is regarded as part

of a complex factorization operator, these errors would arise from

incomplete execution.

S13 ID

S22 5C

S1 10

S22 SC

El 4B

Table 5.20

Errors in factoring

2x
2
-x -3 ---42(x+1)(x -2)

3+x
2
----4(3+x)x

x
2
-x ---4x(x-x)

3+x2---i(3+x)(1+x)

x
2-2x+3--4(x-3)(x+1)

Part of the process of applying most operators is replacing part

of an equation by a transformed, usually equivalent, part. In th
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Bundy system, using a free representation for expression, subexpres-

sions can be replaced directly by equivalent ones. The replacement

problem,is more complicated in the line tation in common 4. The

error An Table 5.21 shows what happens when the subexpression ((x+3)/x)x,
ql

resul,ting from mult plying both sides of the equation by x, is replaced

by the equivalent subexpression x + 3. The rules of syntax require

that the replacement be enclosed in parentheses in this context', though

not in other contexts.

S6 7E

Table 5.21

Replacement

- = x+3 - -2x

iireA

Some other errors which seem to reflect difficulties in actually

carryinq out what might be c.orrect operations applied appropriately,

are shcw in Table 5.22, These are quite diverse, and so the table

contains comments on each. The grouping in the table sep.:Irates errors

associated with the writing or reading process, those related to mix-

ing of operation, and others.

The mixing of operations group includes two errors arising in

clearing the denominator of one or more fractions. Note that in each

case the fraction was multiplied by the denominator, the denominator

is eliminated, but the numerator is also multiplied. It is plausible

that this represents a mixture of the operation of clearing the denomin-

ator and the operation of multiplying numerator and denominator by the

same r ither (Richard Young, personal communication). It is not evident

"N



78

Table 5.22

Failures of Control

Group 1 Errors relat'ed to writing or reading

$15 70 -(x+1)(x-2)---( x -'4-1)(x-2)

E9

---) x
2-3x-2

7(4x-1)..3(14x-1)+14----)7Ymm3y4-1 Introducing variable for
4x-I

Ell 68

s8 68

S22 38

.523 78

53 148

2,(x+2(x+2))...t.2-4(x4.2x+14)...0

1 '

x+2(x+2)-4x+2+4 says "two x"

3(4x-1)+4---312-3+4

6(x-2)-3(14-2x)-.x-12---)

6x-12+(-l2+6x)

2x+23
2 ) 2x2

says "twelve x"

Group 2 Mixing of operations

S3 148

S8 2A

S20 6C

x2 2x+3
32x3.,+ 2x2

x2

Js- 2.1

x
2
+2x+1
2

---)2x2+4x+2 -2

Group 3 Other

S3 2B II ii=mg +
K X y z

xyz Ry;/ Rxz Rxy
Rxyz Rxyz Rxyz Rxyz

Clearing denominator and
multiplying numerator and
denominator bi same quan-
lity

forming common tinominator
and multiplying through

clearing denominator and
multiplying numerator and
denominator by same quan-
tity.



Table 5.22 continued

El 6A

E7 78 I1/12

$22 2E

S22 6A

S8 2C

S7 58

1/1 + 3-9 61 +
f

corrected to 7

x+2(x+1)---*x2 +3x+3

- 7 1

7 3-x 7 3-x 7

1-2---) 2

p.
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Comment:"multiply that
(points to 2) times
that (points to 3) and
add that (points to
numerator) to it, so
It would be 2 times 3
times that (points to
numerator) is 6x + 6"
"2 times 3 plus 7
(changes 6) 2 times 3
plus 1"

whether this mixture ,nould be thought of as an incorrect operator,

possessed by a subject as a stable entity, or whether it results

from a control failure during execution of what might be separate,

more-or-less correct operators. One subject, when asked to explain

the operation did not do so but proposed an alternate method.

Error Summary Table 5.23 shows the overall frequency of occurrence

of,all the -types of errors found, excluding the follow-up problems

for the sel,ected group. Frequencies for the session 1 problems alone,

)

which wer*presented to all students, are shown in Table 5.24, for

the top, middle, and bottom groups of solvers. There Is a suggestion

of a shift in the prevalence of the-error types as acuracy increases, v.

with execution errors relatively more frequent and operator errors less
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Tabli 5,23

Error frequencies, excluCling follow up
problems fore selected

Category

OPERATOR' ERRORS

group's

Frequency

Deletion 60

Transpos i t ion 14

Recdmbination 12

)

Combining fractions' 10

DdcomposItion of quotients 6

Inversibn, f
,

2

Cross multiplication 8

Splitting equations with fractions 5

Reciprocals

Loss of roots 20

Splitting quadratic not equal to zero 2

Square root

Arithmetic 3

APPLICABItITY ERRORS

Applicability 29

Grouping 2

EXECUTION ERRORS

Fartia1 execution 30

Factoring 5

Retlacement 1.

FAilures of control A 17=.1.=11.
TOTAL 227
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Table 5.24

Number of errors and percentage of errors by
accuracy of solvers for Session 1

Category

OPERATIONAL ERRORS

Top 10
Solvers

Middle 14
Solvers

5 11%

Bottom 10
Solvers

31 35%

4 4%

Deletion

Transposition

Recombination, 4 4%

Combining fractions 3 3%

Decomposition of quotients
1 1%

Inversion 2 2%

Cross multiplication 4 4%

Splitting equations
with fractions

1 2% 3 3%

Reciprocals 2 4% 2 2%

Loss of roots 6' 50% 11 23% 3 3%

Splitting quadratic
not equal to zero

2 4%

Square root I S% 3 3%

Arithmetic 2 2%

TOTAL OPERATOR ERRORS 7 58% 21 45% 62 70%

APPL!CABILITY ERRORS

Applicability 1 .8% 17% 12 13%

Grouping 1 1%

4

TOTAL APPLICABILITY ERRORS t 8% 8 17% 13 15%

EXECUTION ERRORS

Partial execution 1 8% . 26% 9 10%

Factoring

Replacement

Failures 9f control 3 25% 5.1_1)% 5 6%

TOTAL EXECUT)ON ERRORS 4 33% 18 38% 14 16% -

GRAND TOTALS 12 47 89
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frequent. This is loosely consistent with the finding of Davis and

Cooney (1977) that more,accurate solvers made relatively more errors

they called "computational". They intended by "computational" errors

of arithmetic, and as it can be seen, arithmetic errors are very rare

amon9 the subjects,if sign errors are otherwise classified. Most of

their "computer" errors wouls1 fall in a "execution" category. It i

important to note that this observation may be due in part to artifact,

however, since any subject who was prone to an error that would be

repeatedly elicited on these particular,problems would automatically

fall among the poor solvers.

Discussion We have seen that a large number of errors can be roughly

located in the framework of the Bundy model. .In attempting to account 7

---
for errors 1n the framework of the Bundy model, or any other, one is

. challenging a common intuition that errors are the result of pertur-

bations of correct performance due to inattention, random forgetting,

or other unsystematic cause. There ire reasons to persevere in ana-

lysing errors.

First, some errors tend to occor\consistently for given students:

a student who makes one error of a given type is likely to make another.

Three of the errors were made five or more times by the same subject.

Of deletion errors, SI had 5, S5 'MI, S16 7, S20 16 and S22 10. S16

made 6 recombination errors. S5 made 7 applicability errors and S5 5.

Figure. 5.10 compares the obtained distribution of deletion r.,rrors in

session I only, where all solvers saw thf same problems, witfl :he

Poisson distribution. As can be seen, the errors are clumped together.
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This suggests that a student has not an unsystematic tendency to make

errors, but a tendency to make errors of a particular type'.

Figure 5.10

Poisson fit to deletion error frequencies

Errors

for session

No of

Solvers

1

Poisson
Probability

Expected No.
of solvers

23 .33 ( 11,22

1 6 .36 12.24

2 1 .20 6.80

3 0 .074 2.52

4

5

0

1

\,

.02

.004

.68

.14

6 0 .0008 .03

7 1 .0001 .00

8 2 p.0000 .00

mean errors per solver: 1.06 '

Second, some errors seem to be consistent with the solver's state-

ments of what should be done, indicating that it is not just the solver's

execution but also his knowledge that is faulty. While such cases

suggest that errors can originate fron faulty knowledge, two cautions

are called for In interpreting them, First, they do not help to estab-

lish the proportion of errors L'Aat h)a e such a systematic origin, above
III

a minimum. Second, it is possible that some or even all of these 5tate-

ments are explanations :fter the fact of what was done, rather than true
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accounts of knowledge underlying the errors. (See Nisbett and Wilson,

1977, for a discussion of this problem in interpretIng,self-reports.)

So this evidence is not by itself very strong.

Third, as a perusual of the tables of errors presented above

reveal5, errors are quite systematic in 'form. Very few errors seem

at all like random distortiohs of correct performance. For one thing,

the same or very similr errors appear in the work of aifferent sub-

jects. For another, the errors tend to reflect featurec of actions

that would be appropriate in other situations. Even if errors do stem

from unsystemati-C perturbations, therefore, a study of them must reveal

something about the system being perturbed.

Although the Bundy model provides a rough classification of errors,

it does not allow u to interp et the deCailed structure of the errors

in the way this last observation suggests we must. Accordingly, we

tate up this analysis in a later section, along with a consideration

of other aspects of behavior that call for modification and extension

of the simple model.



4. CHAPTER 6

Features of Skilled Performance

within the Bundy framework there appear to be two ways in which

oerformance could be improved beyond the elimination of errors. First,

skilled solvers may develop more powerful operators, that can produce

solutions in fewer steps. Second, the pattern-matching ability of

skilled solvers may be better developed, so that the skilled solver is

able to see the usefulness of operators that would be passed over by a
_

less skilled solver. We can examine these possibilities by comparing

the solutions of more and less accurate solvers.

If skilled :.)ers are ustng more powerful operators, their solu-

tions'should have f wer written steps. The number of written steps is

also influenced b ther factors, such as the number of steps performed

mentally, but such action would also be expected to shorten the solu-

tions of skilled solvers.

Averap length of solutions As seen in Table 6.1, there is a tendency

for more accurate solvers to fimd shorter solutions, but this is not a

large difference and it is not consistent across problems. Figures 6.1

and b.2 show the solutions found 1}/ 'students among the most and least

accurate solvers for two problems. In figures 6.1 and 6.2, each phrase

separated by commas indicates a single written line. When more than one

operation was performed in the transition between lines, these are sep-

arated by colons. "Isolate" is used to refer to a step that results in

a single term containing the unknown occupying one side of the equation

by itself. If the t rm has a negative sign,this is indicated, because

it generally requireS an additional step to change the sign. "Dist"

85
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4

(

Equation

.Table 6.1

Average Lengths of Solutions

, Middle 14
Solvers

Top 10
Solvers

Bottom 10
Solvers '

IA 2.0 2.4 2.5

.1 IB 3.1 3.4

..

3.0

,

5.5

2B

..

2.7 3.1

. I

-

3A 3.0 34.0 *. 3.2

38 4.1 3.6 4.2

,

4A
,

2.0

.

4 /
1.9

.

2.0

48 5.2 4.9

. ,

4.5

5A 3.8 3,.9 4.3

5B 5.2 ,4.4 4.7

6,04,

-

3.6 3.0

,

3.6

6B 4.1 5.0

,

4.3

7A 3.5 3.4 .0

7B 3.8 4.3 4.3
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Figure 6.1

Solutions to Problem 2A

1 1

+

Top Ten Solvers

E3 isolatN invert

E5 1;olat,, multiply by x, divide by coeff of x

E8 multiply by x, collect *erms, di,vide by coeff of x

E9 multiply by 21x, clear fractiors, combine terms,

divide by coeff of x

E13 isolate, invert

E16 multiply by 21x, clear fractions, combine terms

divide by coeff of x

S17 isolate: multiply by x, distribute: multiply by 21,

clear fractions, collect terms, divide by coeff of x

S19 isolate, add fractions, inve,rt

Bottom Ten Solvers

55 isolate -1/x, form common denominators, A d, change

sign, multiply by x, divide by coeff of x

S6 isolate -1/x, add, simplify, change sign, invert

S13 multiply by 3, multiply by x, multiply by 7, collect

S1.5

k

terms, divide by coeff of x

. isolate, add', simplify: multiply by x, simplify,

:ply by 21, divide by coeff of x
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Top.Ten Solvers

E3 dist 6: dist 3, dist -, simplify, transpose:'

combine terms, divide by 11

.E5. dist 6: dist -3, set equal to zero: combine

terms, transpose 12, divide by 11

dist. 6: dist -3, combine terms: transpose:

transpose: combine terms, divide by 11

88

Solutions to Problem 78

6(x-2) -3_(42x) x-12

.

E9 identical.to E8

E13 dist 6: dist 3: transpfise: transpose: transpose,

combine terms: combine terms, divide by 11

El4 dist 6: dist -3, transpose, combine terms, divide

lv
by 11

E16 dist 6: dist -3, simplify,,transpose: combine

terms,'/ divide by 11

S8 dist 6; dist -3, simplify, transpose: combine terms,

S17

S19

divide by 11

dist 6: dist -3, simplify, transpose: combine terms:

multiply 1)y 1/11, simplify

dist 6: edist -3, simplify: transpose.24, transpose:

combine tern*, divide by -1
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Bottom Ten Solvers

SI

53

Figure 6,2 contin-ued

Solutions to Problem 76

dist 6: dist -3, simplify, transpose: combine

terms: divide by II, simplify

dist 6: dist -3, simplpy,'-tranr.pose: combine

terms, divide by II

55 dist 6: dist'-3, simplrfy, transpose, combine

'S6

513

515

S21

terms, divide by 11

identical to S3 .

set equal to zero,.dist 6: dist -3, simplify,

transpose, divide by 11

identical to S3

dist 6: dist -3,simplify: transpose 24, erans-

pose x: combine terms, divide by 11

abbreviates "distribute'. Figure 6:1 shows equation 2A, the only one

for which the difference in lengi',h of solution was significant. As can

be seer, the difference in length seems to be due in part to p034

choice of initial step by some of the poor solvers,' partly to more fre-
,

.------quent use of .0e efficient invergion operation by Ihe better solvers,.

and partly to some combining of steps by the better soVvers that were

written,out by poorer solvers. The solution of S13 is a clear example

of the expansion of a single operati,on, clearing fractions, into three,;.'

separate multipli6ations. So there is some indication of the expected

differences between better and poorer solver here.
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\
On.the other nd, insiaection of Oie solutions to equation 7Es'in

Figure 6.2 5hoWs that the dyierence is not dramatic. This problem

requires a number of steps, offering scope for combining of operati.ons,

but as can be seen the solutions of the better solvers are for.the

most part yery similar to those for the poorer solvers. Subject E8,

E9 and,E13 do show more combining of operations than the others-, but

is clear that this is not typical, for the group of- bettei- solvers.

It may be-that these three subjects give Some indjcation of whpt solving

is like for solvers who are More prdficient than those who participated

in he study.
/-

Use of subexpressipns In many operator applications the pattern-

matcher only needs to handle simple terms: the unknown, constants, or

productsof the unknown and const'ants. °Occasionally it is useful to

deal with larger subexpressions as units, and it seems possible that

more skilled solvers might be better able to do this, rather thad break-

ing down the problm, into smaller units.

Three problems in the set were designed to,permit the

r."
solver to exploit the presence of repeated subexpre§ions and treat

them as units, as shown In Figure 6.3. In cquation 78 the repeated

expression is not apparent in the surface form of the problem, and

identifying it requires sophliticated matching...As shown in Table 6.2,

there is a tendency for the more accurate solvers to use the subexpres°

sionl more often. The table includes all cases in which the subexpres-

.sion was used, correctly Or pot. The commOnest use in equation 3A,

9(x+40) 5 (x+40) was to cancel x +40 from both sides, which is °in-
4

correct. The, hidden feature of equat1lin#713 was Used by only one sub-
,

,r,.
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ject, E12. As with the solution lengths, we can speculati that there

may be. more proficient 'so)vers than our top tan group that would use

r%
such features, but it is also possible that in working with simple

equations such as these the extra analysis is just not worthwhile.

-r
These two areas of investigation, solution length and use,of

repeated subexpressions, have not turned up dramAic differences

between the most and least accurate solvers in the study. It scems

fair to say that within this group orsolvers the more accurate solvers

differ mainly in possessing correct operdtors, rather.than in having

more powerful ones or applying them more eqectively.

)
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Problems with repeated subexpressions, with sotutiohs

E7 3A 9-(x+40)=5(x+40)

'ER 3B

(

E12 7B

Q

4

;

4

(9-5)(x+40)=0

x = -40

7(4x-U3(4x-1)+4

7(4x-1)=3'(4x-1)=4

(4x-1)(7-3)=4

(4x-1) X= X

4x=

. A

6(lx-'2)-3(4-2x) = x-12

6(x-2)+6(-2+x)=x-12

12(x-2) =x-12

12x-24=x-12

11x=24-i2=12'

,x = 12

.1

411

92

, t'
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Table *6.2

Use of repeated subexpressions in equation 3A and 3B

number of stuaents
using feature,C0
either equatiloin

II
number not ,using
featurt

of.*

11

Top Ten
solvers

Middle
14 solvecs

Bottom
ten splvers

6 2

6 a 8

1

93
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Mod_Discrepant.Solving Behavior

in this section we consider some aspects of subjects' perfor-

mance that do not fit well into the framework of the Bundy model.

Part of the evidence to be discussed is drawn from the structure

of the errors, presenet4 earlier: these suggest something about the

organization of t17, knowledge subjects are using. Additional

evidence cpmes from'the comments and actiN61ties that surround solv-

ing itself: subjects do not simplsolve, they also explore, eival-

uate and.chegk.

\

Evi4ence of hierarchial organization in the Bundy scheme there
?is. ,

a single poo 1) of operators, no operator being part of another. Stu-

dents' remarks seem to indicate that their operators are hierarchi-

cally organized, so that some operators must be exp?nded into a se--

quence of other operations when executed. For exampl'e, thcoperation

"factor" must be expanded into a complfcated4and,unstandardized se-,

4uence of trial-and-error attempts. The operator "mUltiply but", as

applied to 6inomials, expands into a series of four simple multi. pli-
-

cation operations, which may be written'separately and ma-4; be carriqd.

out in a standard order. Table 7.1 collects examples of operptors

appearing In subjects' comments Oat seem to have expansions.

The expanslons.of operators into parts seems indicated afJo by

some of the errors discussed above. In combining fractions, for example,

1- it appears that eironeous operators arise from the combination of pieces

of correct operations. The assimilation of addition and multiplication

to a generic combination scheme, and of dhlision and subtraction to a

I

sp.
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41,. deletion scheme, also indicate,that these operations are-not unanal,

yzed in the stem". However, the analysis suggested by this evidence

is not an expansion into other operations,4but a more general decom-
,

position of the knowledge of the operators' separable parts, so that

the basic combinat'ion aspect of addit,ion may be retained while Mbre

specific knowledge about its action may be lost or not learned.

Table 7.1

ExampleS' of complex Operations mentioned in protocols

find 010 common denominator

get the x's together'

put all the.yariables on one side pnd the
numbers on another

Cross multiply

multiply both sides by

subtract fro, both sides

multiply two binomials
,,-

multiply what's inside the parenthesis

multiply everYthing out

distribute ,

factor
.

invert everything

Matz (1979b) and Brown (1179) have discussed the way in which

parzial information about operations, embodied as "critics", might be

.used by students attempting to learn or recall' a given operatioh. The
t.

Ji 4
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"critics" might block an attempted addition' operation i* it lacked

some .key feature assOciated with addition, Robert Neches (personal

,

Icommunication) has suggeseetithat the use of partial information

to constrain an operation might be a basic part of the memory retrie-

val process,.in which the remembered prt,cedure is built by the memory

system ,to embody as many remembered feaeures,as possrble. Whatever

mechanism is responsible for the effect, it does seepillear that both

abstract features of an operation (deletion for subtraction or divi-
.

sion) and pieces of related procedures (cbmbination of fractions) can

0 influence the procedures students use.

it would be interesting to know whether erroneous'operators are

built up at the time they are used, or during a learning process that

might precede their application. Only a few passages in the protocols

siggest strongly an operation being devised on the spot. These are

shown in Table 7.2. Internal evidence from the trroneous operators

suggests, in some other cases, that the operator was created justi/e-

fore application. These!,6,cases in which the operator seems to have

been shaped by .the particular goal being sought at the moment of appli-

4

cation.z: Table 7.3 shows examples.

In the first two cases in the table, operators are devised that

have the desirable property of moving x from the denominator, where it

is hard to deal with, to the numerator. Having,made the move shown here,

S5 went on to,use variants of it on three subsequent problems. ,The

third case,S5 5A, shows, adjustment of the cancellation operator to
414.

avoid the problem of the vanishing unknown. The last two examples, in-

volving recombination, may not reflect construction or adjustment of



Table 7.2

Constructing Operations

SI ID 3 2

T x -x

x .(x-x).

(

S5 20 ,

97

S:"I'm not sure about that one.
Plus the properties are very
confusing. So if Vou do x-x
thats, obviously zero. Oh wait'
a minute.

hatsx times x minus x so if x minus x js zero it'd be
x times zero, It'd be three halves equals zero. Can't
do that. (pause) Well, if .this won't work right here
then I'm trying to figure out some alternative way oft
doing it."

E: "Whbt vould the rule be - suppose you could do what you
just you know, putting the parentheses in like that.
Is there a general rule that you're using there.that would
allow you to do that?" %

S: "Um, I believe it's the associative. I'm nol real
positive but I think.it 15."

E: "Could you give like another exa'mple of it besides
this one that might indicate what the rule would be like?"

.,,.

3 .(2+4)18, s:..4c would be like ah um, three
(3.2)04 .., 10 times two. I'm just trying to

3+(3-2) figure out if this one will
work. Three times two plus

4 four that!d be three times
six that equals eighteen. Three times two plus four o .

that doesn't work. Ok, the,. property I'm.trying to thi k of
I guess it just does for, if the mode of, whatever, if it's
addition or whatever is the same, like three plus three
minus tWo, that would work ! think when you take the recip-
rocal of a numl:or you,have to change the signs but I'm not
quite sure about that."

-3 -2

6"

'4 was trying- give numerical values
to the %)ariables but I didn't toink about
the equal sign when I made 6/3.equal to
4/2 but 2 is equal to 2. NBut that's not
exactly what I want.

'A waS trying to see if takir if taking
the reciprocal meant that had,,to change

the sign to the opposite. What Pp
thinking of is when you have an exponent
on the bottom that's negative, when you
take the reciprocal it becomes positive.
But, I reallyam_not thinkin too much.

- )
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Table 7.2 continued

t

I. + I . 7+x S: "This one I .can.do. Cross
3 x 7 3

multiply". It,doesn't seem
'to me ,like that'd be right.

1 x

7 Ok'all right, it's not right"
changes to 1 x'

3,., 7 ,

5 x-10
'10 m, x+5

p.

S: "YoU get 4, equals x. ut x
5mix iphould be Ve same. NaHa".

"So I'm thitilang it's messed up.

- Maybe you.could set the 2
equations', but they're not
equal to each-other. Reduce
500 to one half and set x
minus 10 equal to one and x
'plus five equal to five" (gets'
x!.11, x-3) "You could solve"
it as a system and minus
10 equals 5, x plus 5 equals
10, and then subtract this
whple equation from this orte.
Maybe we should add the two
equations." (gets 2x-5=i5,
x.10, checks) "So that would-
n't work either. I don't know.
I don't understand why it does
not work out."

the recombin4tion operator, but may simply illustrate its flexibility..

All three errors in the tWo examples seem to b's. well calculated to

attain a usefurend) The first error separates x, Ibis is however

next undone to permit cancellation of the 2y/term. In the last ek-

ample the recombination chosen allows x to kg easily isolated.

21*

A ..1"1

,
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Table 7.1

Goal dlrecteti errors

..\
S22 ?A + 1 + 7 first, then

x ' x

55 2A 4 21

21 217)-(-

S5 5A 5

'FE

)(-10

x+5

x-10 1

-2->4+5

522 I4A

S22 4D

changed to

x

T 7

---H x-2
. 2

x+2yz2y-----4

xvO

then later

bcx + acx +abx + abc 0

3abc + 3x

x-abc0

Some characteristfts of Erroneous Opeyators As just.discussed,

erroneous operators might be put together using existing knowledge,

and then applied. Another way some erroneous operations dould 'arise

is by switching between correct operations in mid-execution. Thus the

student rhight'not possess the incorrect operator as a-Stable entity.

If complex!operations were implemented by sets of productions'in a pfo-

duction system one could readily see how,invalid hybrid'c4ierations Might

be carried out by the system in the Tient of iciss of control -informati.on..

9

,
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from memory. A stack discipline, in which a.stack is used to liold

pending parts of expanded operators,could also-fail in,such a way as to

produce mixing. Some ,of the errors in combini9g fractions'in Table 7.4

might lend'themselves t;) this kind of account (Richard /kung, personal

communication). Such mixing of operation, if it 'occurs, would necessi-

tate an analysis of operations into parts.'

SI 6C

515 50

516 jE

Table 7.14

Errors in combining fractions

x x+x+1
T 2

4(x(2+x)+2(2+x)(x2)
x12+x7-'

7/- x+3 7-x+3
x 1-x

)

.516 SD 4 2 8

I x

S22 2D'

1.
--c

. 522 2C 1!I1,4. 7

T;T:
1

S16._.2B
J.:4- 1 +
x ' y 1/4.

,k

S22 28 +
x y z xyz

S20.2A 1 _110
S21 3 Y

p.

.,

. 522 ,2E 1/x+1

2
+ 3.0___0,3z1. + 7 Comment: "multiply that

,

maybe (points to 2) -

times that,(points 't
to 3) and-add that
(points to numerator)
to itu. Maybe based
on 1

a a
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r- AOne ca e of mixingiof operations in,correct performance shown

in Figure 7.1. This largetep may arise as a combinat4n of n

tributions, n traspositions, and n combinatioos of terms. Tbe result
41* A

was written strictly left-to-right. Although the operation accompAsheS

all the effects of the meqtioned operations, it may or may n,ot be a

mixture of them in the sense discussed above. As pointed put.,by Robert

Davis, personal communication, it is possible to define Arasingle,pro-
,--,

cedure which gives the desire0 effeA, and 'the student mi6ht simply b

using such a procedure. without reference to the silaller operations.

thil; example, like the caseS of combination of fractions, does not
0

establish that pieces of orerations may be mixed during execution.

.£13 78

Figure 7.1

A complex oper tion

.6(x-12)-3(4-2x) x-12

6x+6x-x 1212-12

oft

Ilx 12

12

The kinds of control mechanisms that might r)roduce mixing of oper-

ations might account for other kinds of errors. The idea of partial

execution presupposes a control system in which it can happen that only

part cc an operation is carried out. Both the production system and

stack discipline have this as a natural mode of failure. In a pro-

duction system, if not all the tests that make up a condition were

accurately checked, a production that should have awaited the completion
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'

-of,an operation being carrked out by a,set of other prod tions might

apply prematurely. It is mot necessary to assume thatthe action of
%

any-single production could be only partly performed.

If a stack discipline were used,'it would be necessary to assume

that items are sometimes simply lost from the stack. The prevalence
sc:

pf sign errors might sugyst that some pieces of ospra%<s, such as
't

e

sign setting, are more liky to be .lost than others. However, only

some losses wi,11 shaw up as partial executions, since loss of'really,.

vital early parts oh. arr'opration would result in inability to perform

the later parts at ,a1-\ and perhaps lead to reloading of the stack.

.For human solverS Operators are apparently not units of knowledge

that either are known or unknown, as they are in the Bunily mode).

Students frequently,,expressed Aoubt about the correctness of operators

they used. These doubts seem to lead.to behaviors that would be un-

necessary in a solving system that had only definite and certain know-

ledge of its operators. First, students monitor the progress,of thei,r

solutkpn, making evaluations of the statesilhey reach. They may back-

track if it appears that what they have done was not leading in the'

right direction.

Table 7.5, collects exaAlples Showing evaluation of the situations

reached in the solution erocess, grouped according to the aspect of the

situation that is attended to. During the cours1 of solution, the cm-
,

plexity of the equations formed is noted, though it is unclear what deter-

. mines the judged .complexity. Also, the legalitY of moves is assesed:_

solvers may plan or even.(,carry out moves which are then retracted be-

cause they are judged not valid. Solvers also try to avoid returning

to. earlier states. Group 3 of the table shows examples. When the solution

p 111
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fe,

process is complete, the solution or solutions obtained are evaluated.

frt may be that the conclusion is that there is no solution; since this

is rare, sOlvei-s may use an alternate method to be safe. If a sdlution

is obtained it may be checked, as discussed below, and if it is found
4

wanting, a new method may be used. Some solvers seem to be aware that

a quadratic equation has two roots, though they may not be distinct.

The Table shows two cases in' which failure to obtain two distinct root
. .

may have ledto new attempts.

Not-all backtracking is controlled by this sort of evaluation, f

coursesSolvers may reach a dead end, a state to which no'appropriate

0

operation can be applied. This forces backtracking. The final, group ln

ti* Table shows a few examples.

A second beaVior made necessary by imperfect knowledge is checking.

c
2.StUdents may check their answers or the solution procc§, and may check

C;

the process as a whole or in part, by a variety of melhOds..

1)1.
Methods of checking may be divided into local and global methods.

Local methods indicate whether some particular step in 'the solution

process is correct or not. Global methods indicate whether the solution

proce-as a whole is correct. Within these categories, different methods

with different characteritics exist. Table 7.6 lists the methods used

by students on the fourteen first-session problems:

Considering first the local Methods, by far the most common is re-:

tracing the:solution process. In this method the solver examines each

step of the solution to see whether the inteAded operation was accuratelY

Carried out. The problem is not solved again, because the checking, is

done by referr,ing to the written trace of the solution. This means that
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0

LLJ Evaluatons
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Group 1 Cbmplexity

ElO 36 7(4x-I)..3(4x:l)+4

, 4

r

S5 2A I 1 1 4, + " x
3 x 7 21

/

R y

S12 2B I I 1

x

t

x2 2

1 1 1 1

7

4fzx yzR Rxz Rxy
,

515 ZB I 1 1 1
7

a

S:"Well actually I don't be-
lieve that's going to.herp
me any. It'd complicate,
things more in the long run'."

)
S:"That's not, that doece't

look ok.- i'mCgOing to do
it another way,"

S:"I'm try4ng to see if I can
take X squared and multiply
this (points to l/x) by x

squared and get x" &ifs so
"!'m not approaching it.
I'm not even coming to it."'

"I'm going'to try a differ-
:.ent way. I don't like that.
It's too complicated."

k

S."It.juSt doesn't seem like
lx l t simpli.fies anything."lx x

P Y

P,

xyz-x;p-xyp
S:"I tWnk I made it more com-

pyz .

plicated."

Group 2 Legality'2

E4 2A + 3--4 x.i2 (Incomplete) S:"Take the x over to this
, x

side and bring this seyen
throug Can't do that."

S':"It doesn't seem to me like
hat'd be right. Ok all
righi, it's not right" 0 fl

changes to 1 x A

3 7

SI 2A

a

7+x

fa.

!3
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Table 7.5'cOntinued

GrLup 3 Retufp to earlier state

S5 64 x+2(x+1).4-L-47.-

il3 2B

+

y,zx7yzR' Rxz+Rxy

S20 6B x+2(x+2(x+2))=x+2=---1

x2+4x+4-1

GrOup 4 No solution

E3 3A 9(x+410) 5(x+40)

E6,E9,S11
S10,3A.

E9 53 1-x2

'ffr

i05..
It a

S:"1 can't go baek be'cause
1 COMO up with this
(points to original left
hand'si4de) if 1 try to
factor down sosi'm just
going to leave it like
that."

S:We're going to factor out,
,

naw, that will gtve me
the t/pg I started wittl."

S:ol can factor this back
down but that won't do
me much good."

S: cancelshen remarks
9.,5 doesn't exist, so
l'm going to work out
the problem to see what
I really got,"

S: solves using quadratic
fonmula, gets xitl.

Checks.
"And the first thing you
notice is that when Ou
plug in one for x up here
you're dividing by zero.
,So there is no solution."
Then solves by Cancelling.

"You notice that there's
again mo solution; All

right."



Table 7,5 continued

Group 5 Number of roots

£114 5B -
=2

S11 1B

.----). 1 -x = 0

or'

l+g = 2

4.

2x=x2---2=x

Group 6 Dead ends

E7 4B x2-2x+3=0

S6 ,6A .x2+3x-2=0

IP.

4

1.06

S:"Cancel these 1Lx by I-x
if i-x is equal to zero
and x equal to one. And
the other answer would be
l+x Wbqual to 2. x equal
to 2 minus one would be
also,one. Therefore no We
can't say that that's equal
to zero because-that's
(points to 2 on right hand
side of equation with can-..

cellatton) not zero: Ok
that's a-good question."

Solves by multiplying by
I-x, obtaining (x-I)z=0.,
"Ok that's the reason ole,

got 2 answers x=1 iiptes:ze
because we haVe x=1 have
as an.answer for both of
them.

S:"1 believe I.can divide by
x. Let's try that" checks
both negative .111nd positive
2 as solutiorle "So it's
positive 2 only I guess.

. Another way, can I solve
this another way?" ,forms
x2 -x=0, solves, finds .

both root*. "That's cor-
, 'rect." Crosses out 2=x.

S:Equeion obtained by an
error. "This one.doesn't
seam to factor very well.
That's whY, I made a mis-
take." corrects

similar



Tabfe 7.5 contfEued

SI 5A I ,x+5

x+5 ---7 2(x-10) f;

SI 58

S20 48

520 IA A.p+prt_--4, ..,___-1=rt

f
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S:"I know what I can do I

think. Multiply, cross
multiply."

S:"Broke down the equation
but ah its not going to
equal. I.think I'm going
to have to skip that pne."

S: .Solve for p
"That's about as far as
it goes."

, there is danglr that an error made in the solution may be repeated
c,

during checking, eiffier because of a stcable conceptual error or beCause

of some temporary lapse. Excerpt E8 IA in Table 7.7 shows one student's

handling of this second difficulty.

/--

There are a few cases, collected in the next category in Table 7.6 ?

in which only a single step of the solution process isichecked by re-
.

tracing. This was done three times to check the product of binomials,

once to check clearing of denominator, and once to check conversion of

a fraction to a new denominator.

A local method which has the advantage that it could detect even

stable conceptual errors is checking a step by carrying out the inverse

operation of the step. Thii' was seen seven times, each time to check

factorization by multiplying the factors. The methqd cou1d.be,a0p1ied

to other operations, such as simplification of gootients by cqncelling,

using multiplication of numerator and denominator by ble same quantity

116



Local Methols

sOlution

Retrace single
step

Perform inverse

operation

Numerival
Substitution

invalid Variant

Analogous PAioblem

Glpbal methods

Substitute Answer

Consistency

V

Table 1.6

Method Checking

Cases

ES IA E9 76 E9 6B

ES. 7A E9 lA E14 2B

ES '6B E9 4B E16 78

ES 2A E9 5A S3 6A

E8 5A E9 4A S3 38

ES 3A E9 7A S5 /6
ES

E9

4A,

6A
E.9

E9

2B
38

517 73

516 2A 53 7A S5 66

S3 2A 53 78

E5 56
E16 56
SI IA'

,S5 5A

S5 68

S5 66

E3 5B

E3 3A

E3 36

E3 68
E3 48

E3 5A

E5 49

ES 4B

ES 4B

Ell. 58

E12 5A
E16 58

Sll 56
Sll 4B
513 68

S13 2B

E16 4B S17 6A

E16 2A S17 5A

06 18 S18 5A

S3 18 S23 18

S5 7A 523 78
S8 7A S23 58

sip 5A s23 38

Sll 18 S23"2A

S17.58 523 7A

5I7 4B 523 6A

S17 2A S23 5A

S5 2A S12 IA s13 26

SIO 5A

1

Number, Number of,'

of Cases students'

.23

5

7

1

34

A

7

3

5
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Table 7.7

4

Protocol excerpts on checking

Student checks at.end of series of problems.
E: "Do you have' a particular reason for
checking at the end of the whole series
rather than checking each'one as you go along?"
S: "Yes, I'm not asAlikely to make the exact
same mistake twice: After you've done some-
thing one time it tends ito fix in my mind and
if I try to check it imMediately I'm iiable
to just do it over4again."

109

S5 7A x2 -x-16=0--4x-16=0 S:"I don't know whether I

---*x = 16 should do this, etwe
try this." subs Ottites
16 in original, equation.
"Definttely not."

S23 2A 1 1 1

x

21 x

-

S5 2A I 1 I I 3

+ 7-7 -27- ;7+ TT

7 3 1

)

4 lx

S:"I'm trying to think if 1

can cross multiply to find
the answer or invert the
fraction. See If that
would be the answer. I

don't remember if that
works or not. It's been
a long time since I've had
algebra, so God, I don't
know what to do. Um, if
I cross multiply I'd have
21/4 for x and that let's
see, 4 21st and 3 7 21sts
and that's the answer so
that's what I'd do."

tit )it

"Four 21 is equal to x.
That's not, that doesn't
look, Ok I'migoing to do
it another way" does so



S13 2B

53 3A

5177B

-

Table\ 7.7 continued

1 1 1 1 1 1

777- T
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cross multiplies

S:"But it's exactly the(
opposite of what I did
over here. I must have
done something goofy.4'

rechecks cross multiplication

"Th's is strange. If I

worked it two ways I should
core out with thiksame ans-
wer considering I.did
was switch to the other
side of ihe equal sign. I

must have made. Oh I see

what I did.IPoints to lx
1

I made it x over one. No,

that is correct."

S: "I'm trying to get the same thing up there
to see if I did it right or not."
gets agreement
"Ok, I suppose that could be the answer.
There's too many variables. You can't

work it out."

Checks answer by substitution, get 0 O.

S: "Um that still looks a little awkward. Normally
you don't come but with zero is equal to zero.
So I'm going to select a number, let's say 20,
and put it in and see if any other number will
come but other than -40." substitutes "And I

have 60 times 9 is 540 and this is 60 times 5
is 300 which is not the same, so ah basically
looking at it I would say that -40 is theine
and only solution."

S: "Let's see I'm just checking over this. It doesill.'t

I'm looking for a quick solution like coutd I .

divide 12 straight through, Well I couldn't ,

because there is an x there. Arid what I'm looking
for is sometimes these problems are made where
you're looking for a simple way to get some
,factor out so I'm juit seeing ikmaybe I made,-

a mistake. That's'a quick way for me to catch
an errore"



S17 68

517 4B

S23 78

Table 7.7 ccntinued

, I

S: "There's no fraction so I don't see why to
check it, and I'm beginning to feel,a little
bit more *confident."

S: "No we need to go back and check Qn cause we
haye a fraction here."'

S: "And I probably wouldn't even go bpck and put
it in because it came out ev.n and it's too
much trouble with all those numbers."

as the inverse. The requirements' are that an inverse exist, that

it be known by the student to be the inverse, and that Pie student

be able to perform tke inverse operation accurately.

A more generally useful method, that could be used to check all

steps that replace an expression by an equivalent expression, is trial

evaluation. If expr is to be replaced by expr', then all unknowns

and literal constiets in expr and expr' are assigned numerical values.

The expressions areithen evaluated,,and if expr and expr' are equiva-

lent the values obtainedrmust be the same. The method is only of

heuristic val4e, since it may happen that the values obtained are the

same'even when expr and expr' are not equivalent. One student verified

that x/x could be simplified to x by fitiding that 1/1 is 1. But prudent

'choice of numericat values, and the use of more than one assignment in

especially doubtful cases, can make the method quite reliable. As

shown 'n the table, this method was used only once in session 1.

The same solver used an invalid variant of this method in one other

case., To check whether a factor could be cancelled from the two sides '
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of an,equation the student set up the "equatfon" I- (I) (4), and then

tancelled the l's. Since ,the ';equation" is_not, valid it is

,hard to see how the canCelltion can be checked.
A.

The same solver used one more local method to investi.gate the

same cancellation operation. This time a simpler problem of the same

form as the problem being attempted was created, and the doUbtful step

attempted on that pro0Oltm: the original problem was x+2*x+2(x2+4X+4),

the doubtful step being cancellation of x + 2, and the analogous pro-

blem was a . (a) (b+c+d). in this case the analog was not a useful

check fOr two reasons: first, the student was no more confident of

the correctness of the step as applied to tke simpltr problem and

second, the analogou!'problem isinot really analogous, since it embodies

a false interpretationbf the grduping of' terms in the original.

Turf og to global methods, the commonest method of all is checking

by subst Ang the answer into the original equation and seeing whether

it reduces to an identity. This and other global methods have the draw-

back that they p'rovide no information about what step in the solut.ion pro-

cess is faulty, if the answerdoes not satisfy the ecidati.on. Conmonly,

wIlen substitution indicates the presence of an error, the student retraces

.
the solution process hoping to spot a mistake. As noted above, retracing

can fail because'of a stable error, so it may be necessaryvto attempt an

alternate solution method rather than piitching up the original solution.

Nn. two cases, S5 7A and 523-2A, students appteaed to use subs'titution
6

checking as a local check:' There was JuSt one step t.hey were doubtful of, .

which they checked by obtainift an answer and substituting. Excerpts,from

these protocols are included in Table 7.7.

II

'The only other global method used is consistenvichecking. Here the

student companes the results of two different solutton methods which should

121
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agree. The pnotocol S5 2A, excerpted 'n lAble 7.7; illustrates the diffi-

e.ulty of using a global method to find an error, 'The student locates .the

incorrect step in one of two conflicting solutions, but is confident

it is,corre-:.t.

The other three cases of the uSe of this method also deserve 4pecial

comment. In one,,S13 2B, the solver
)
had started and eventually abandoned

one line of work. A second llpe was also'bogging down.. Before abandoning

the problem the student checked for errors in either ljne by working from

the end of.the .second line of work to obtai.n the equation reached at the

. end of'the first line. This protocol is excerpted in Table 7.7. 'In S10 5A

the two alternate solution methods begin froM the two equations obtained by

50,1tting an equatioh of the form a/b c/d into a=c and bed. Having)ob-

.

tainIng a solution to the numerator equation the'student solved the denom-

inator equation, ah'd, since the 'solution was different, realized ttat an

error had been made. That- the error arose in the splitting process was not

realized. ,
In case S12 1A, discussed more fully bejow, thd student solved

the equation, which Fontained literal constants, by solving an analogous

equation with only numeric constants and then dedompoSing the numeric quan-

rity.obtained as a solution into an expression in the original literal terms.

Rather than check this solution by substitution, which would have entailed

the'manipulation of literals that were avoided in p)e.solution, a check was

attempted by repeating the solution process using a different assignment

of numerical constants. Unfortunately; an error in the second solution led
A

to rejecting of the answer obtained earlier, which was in fact correct.

As mentioned above, methOds differ in the type of error they can

detect. Since the type of error different solvers are likely to make

differ, different methods will be appropHate for differen't solvers.



Specifically, one would expect better solvers to have lep need to

check for stable conceptual errors, while this would be crucial for

solvers with many cOnceptual confusions. Accordingly, a method like

retracing would be more useful for good solverssthan for poor ones,

though a method like substitution of answers which catches both '

stable and unstable errors would be'better for both groups.

Table 7.8 shows the frequericy of use of the various checking

methods broken dowm according to the accuracy of Ihe solvers 44 As"can

be seen, checking is much more common among better solvers, espeCially

, when number of cases of checking rather than number of students check-

ing is considered.

Method
0

Local

retrace

retrace part

inverse

trial avatvation

invalid variant

analool

Global

substitution

consistency

Any

Table 7.8

Checking and Accuracy

Top 10
Solvers

cases solvers

Middle 14
Solvers

Bottom 10
Solvers

cases solvers cases solvers

20 5 0 . 0 3

1 1 0 0 4

2 2 2 1 ,

$

3

0 0 0 0 1

0 0 0 O 1

0 0 0 0

19 6 13 6 A 2

0 0 2 2 2

42 8/10 17 7/14 17

2

2

2

2

2

4/100
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An argument could be made that trial evaluation would be, the method

of choice for poor s'olvers. Like substitution, it can detect stable

coriceptual errors of the sort poor solvers confront, but unlike substi-

tution it can be used to test a single suspect step and so avoids the
4

problem of determining where in an entire solution things went wrong.

As can be seen, this desirable method is virtually unused.
11.

The initiation of chocking can apparently be 'controlled in various

ways. Some students appear 'to check as a general policy., while others

will check only wheo they have some reason to be doubtful about some
a

step they have taken or some unexpected feature of the, answer. Some

excerpts from protocols that bear on this question appear in Table 7.7.

Case E3 3A shows a check within a check: checking by substitution doesn't

usually come out with 0 = 0, so the student considers the possibility

that the equat'ion might'be satisfied by any value, which would render

4
the check by substitution trivial. In case 517 76 ,the solver expected

that the solution would involve some trick and since none was found an

error is suspected. The two cases S17 68 and 517 46 indicate that the

solver regards problems with fractions as especially needing checking.

It is not clear whether this is because of their difficulty or whether

the specific problem of extraneous roots is behind this idea. This solver

did detect an extraneous root, and so was aware of the problem. Finally,

case $23 7B indicates that checking will not always be done even when

it might be desirable.

Another difference one might expect to find between.human solvers

and the Bundy model arises from the* fact that equations have no meaning

for the model. The model incorporates no knowledge about algebra that
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connects algebra to any other domain of knowledge. Greeno (1976)

has argued-that such connections are an ingredient of what we call

Understanding, and play a role in learning, recall,.andqransfer.

As shown in Figure 7.2, there .are two domains in which the equa-

tions manipulated in algebra ean be assigned meaning. Expressions

and equations represent numbers, functions, and relationships among

these. These e t ties, in turn, are often used to represent physical

quantities and theLr relationships, or other relationships between

quantities 1 the world, such as the relationship between discounts and

prices. >Hay! g an interpretation for the objects being Manipulated can

be useful in checking results obtained. No physical or other practical

interpretation was supplied in the present study, and there were no re-

ferences by solvers, to any interpretation of that kind.

g.

Symboljc domain

Mathematical
domain

,

The real world

Figure 7.2

Domains for i,nterpreting equatiOns

a

equations, expressions

numbers, functions
re1at,ionshiss among these

physical processes and other
quantitative relitionships

The mathematical domain also provides potentially useful inter-

pretatlons for equations and their parts. Expressions represent functions,
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and equivalent expressions are just those that represent equivalen't

functions (Note that "a+b-a" and "b" represent equivalent functions in

the sense needed here, but not identical' functions, since the first

.;

function has an extra varjable.) Since equiyalent functions have.the

same value for corresponding arguments, it is ppssible to test the

equivalence of expressions by evaluation this is just the trial evalua-

tion method described above, which was Used by one student. This check

is semantic in that lt implicitly used the correspondence of expressions

_and functions. It is questionable that there was any explicit knowledge

of this semantic relation, however, since this student tried to use the

method inappropriately at least one other tinie, in a way that violated

the necessary correspondence between expression and interpretation.

There is not much indication, then, that meaning plays a large role

in equation solving. That does not suggest that it could not do so,

however. One might hope that the prevalence of ridiculously invalid

operations could be reduced if students knew enough about the meaning

of equations and expressionS. to aloess the correctness of their actions.

We return to this-point in the discussion.

As a final point of departure from the Bundy model, we present

some non-standard ways to solve equations. These serve as reminders

that people, unlike the Bundy modbl, are not specially adapted to alge-

bra, so one can expect invented methods to appear here as they, do else-

where in mathematics (see Resnick, 1979).

The ordinary way to solve an equation is to transform it into an

equivalent equation or set of equations which is in the form x expr,

with expr free of x. This is the metlloc),46sed by the Bundy system. Two
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other methods appeared in the study;.hover. These Mjhods avOided
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transformrng the equation

One of these methods occurred only in the single' example shown

9
in Figure 7.3. The student had attempted to sol.ve the equations in

the normal way by transforming it, but had trZe with the formal

manipulations required. So he transformed the problem to an analogous

one with numeric coefficients. This could be transformed using arit,h-

metic instead-of soge of the formal operations, and,solved. Then the

solutionlic the original equation could be formed ,by tracing the sclu-,

lion o.f the 'humeric yersion.

SI2 IA

Figure 7.3
,

Solving a numericarversion of ;').r.fblem

A = p prt

A='3

2

3

restarting after
abandoning 1-A = -rt

.4-



The other method was used more often, bul its use is obviouS, only

\

on problems for whjch'it leads to errors, since on_ many problems il,

looks like sollition by inspection. The mthod requires the. assuMption.

n
that a solution of an equation will, when substituted into the equa-

tion, make the two sides of.the equation IaL the same. Thus 2 is a
p

solution of ,2x x, because 2-2 looks the same as 2-2. Zero would not

be a solution, or perhaps not as good a solution, because 2-0 and 0-0

do not look the same. The method becomes distinctive when applied to)

equations involving fractions. Examples are shown in Table 7.9. As

can be seen, the equation is,split into two equaLions, one if which

will when solved make the numerators the same, and the other of which

would make the denominatoA the same. Un'fortunately, it is not clear

how users of the method deal with the,usual situation in which, these twoi

equations have different 5olutions. In one case, S10 4B, It appears

that it was assumed that either equation would yield a solution. In

other cases the inyestigation of the two equations became cbnfused and

.?kconclusive, because of errors.

S16 5A

5E

4s

Table 7.9

Splitting equations with fractions

5 -k-10 5.94-10

. Tb x+5 1009(+5

2
,

2x-+3 x '2x
2
+3..x

3)09

2x+3,

72
510 5\ 5 x-10 54x -la ,

to x+5

516 5B 1_x2
2

2
x 2

I -x



CHAPTER 8

Discussjon

We now return to the five general issues raised in the intro-

duction,'and consider what light has been shed on eSch by the re-

sults of the study.

Errors and mechanisms We have argued that the errors we observe can

be divided into three types: operator, applicability, and execution:

The three types have different preventi-ve or reme4iai measures.

Operator errors seem to reflect incorrect knowledge, or incom-

plete knowledge that is overextended under the pressure of solving.

The erroneous steps seem to be the distorted and fragmented, but seldom

completely/Unrecognizable, images of' correct operations. The task of

preventing such errors seems to divide into three parts: making initial

learning more successful, discouraging the later construction or re-

constrioction of incorrect_operators, and correcting existing incorrect

operator's. We have little to suggest about this last part of the task,

bsyond remarking that the kind of detailed diagnosis we have attempted

may be essential in dealing with students' difficulties. This study

included no intervention, and so we do not know what would have happened

if SI, who gave such an articulate account of the cancellation errors in

Figure 5.6, had been given at that moment an accurate analysis to con-

sider.

The save detailed analysis of errors may be important in improving .

Initial learning. With respect to deletion and recombination errors in

particular it seems students are inclined to take a rather generalized

view of the operations.they'are !earring, and-with the nature of .the
q
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likely over generalization in mind it might be..possible to choose exam-

ples in.'teaching that would bring out the.needed discriminations.

A second attack on, t problem of initial learning 11 through meta-

knowledge of right and wr ng, if the student can distinguis6 a correct

operator from an inc7rect one, then he or she can edit out the wrong

guesses and generalizations that must inevitably'flow from limited exam-

ples and ill-understood explanations. We will return to this in dis-

cussing the kinds of knowledge students should have.

In discouraging the construction or reconstruction of erroneo,us

operations knowledgeN'of right and wrong is still clearly, important,

since the problem of filtering correct operations from wrong guesses

(Matz, 1979a) is fundamentally the same in Construction as it is in

initial learning. There is a second attack on this problem, however,

that may be worth considering,.though it is disturbing: Perhaps students

should be discouraged from trying to figure out algebraic operations

they do not understand. rt may be that trying to stretch inadequate

knowledge results In creating, patching up, and so preserving false

notions; as well as preventing requests for,help. Such an approach

raises the problem of helping the student see the boundary of what it

is sensible to try to4-work out and what it is not, but that problem is

a real one and cannot just be ignored.
.1

The bulk of applicability errors involve mishandling of parentheses,

with the'terms in an expression being assigned a false grouping. These

etrors are quite cOmmon even among accurate solvers, so it is unlikely

that they reflect a real misunderstanding of the syntax of expressions.

Rather, it seems that the Patterns of parentheses is just not as salient

as it should be, and when solvers ariblocking out the structure of ex-
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pressions it may be'overridden bV su'ch other grouping factors as the

repeated form in equation 6B. Unfortunately,-it se;ms that it is the

122

absence of parentheses, rather than presence, that is most frequently

overlooked, so devices to draw attention to the parentheses might be in-

effective. Perhaps studentsould rewrite'eXpressions with extra spacing

between terms that are not within parentheses.

Some students, such as the one who confusad "one oxer two x" and

"one-half,x", do have trouble with.the syntax of'expressions. \Probably

more confusions about syntax are masked by the generic deletion and

recombination operators, which blur many distinctions. Since expressions

are representations of calculation, and the syntax is intended to cap-

)
ture the nqcessary information of order.of operations and assignment of

-arguments to arithmetic operations, students might benefit from exercises

in which complex calculations were to be written as expressions. Programs

for a computer or calculator might be good representations of calculations

from wSich to translate to expression form.

Like applicability errori, execution.errors are relatively common,

even among accurate solvers. Also, there is not the clumping of these

errors that is seen with some of the operator errors: no solver had More

than 3 partial execution or control failure errors in Session 1. It is

plausible that there is a tradeoff of speed and accuracy in equation

solving as with other tasks, and that the price in efficiency of carry-.

ing out all operations flawlessly would be very large. More data would
#

be needed, hdwever, before it couid be concluded that students' execution

tit

accuracy could not be improvi withodt loss of efficiency.

Good solvers kOt much was learned about the differences between more

and less accurate solvers. There were a few glimpses of the kind of per-
.
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formance one might +lave expected of expert solvers, but no sharp con-
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trasts on a group basis. between the most and least accurate solvers in

the-study beyond the difference in accuracy itself. .There were sugges-

tions of tighter strategic control, indexed by agreement with the basic

Bundy strategy, more economical solutions, and greater use of repeated

,subexpressions 'as units of analysis. Further walk with more challenging

problems and more experienced solvers might sharpen and add to these

indications.

Kinds of knowledge in algebra Equation solvers have to know a set of

correct operators. They also have to know what to do to an equation, to

move it closer to solution, and what operators will help. To decide

what to do to an equation, the solver must know what features of an equa-

tion, such as number of instances of the unknown in a denominator, ire

important in deciding what to do. We have presented difficulties that

reflect voids or distortions in these bodies of knowledge.

We argued that operators are not simple units of knowledge. It

appears that there are operators like "factor" that have other operators

as parts so that the student can use the notion "factor" in planning,

and then expand it into its constituents when it must be carried out.

Even operators that do not seem to have other operators a4" parts seem

to have structure, in that a studect may have only partial knowledge of

them. Part of the knowledge of adding and multiplying seems to be that

they accumulate things, while subtraction and divisior both take away

things. %44 have argued in, the case of recombination and deletion errors

that these pieces of partial knowledge can determine the form and occur-

rence of errors..

Strategic kivowledge is alio not simple, or at least not as simple

as in the Bundy _model. It appears that a solver needs to distinguish

3Aglw
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. 2
linear from quadratic equations,.and heVe a different plan for each.

when the unknown is present in q denominator, a check for extraneous roots

must be appended to the normal plan. The solver must know that if there

are no occu.uences of,the unknOwn somethingtlas gone wrong, and that

multiple occurrences of the unknown must be reduced to one before the

equation is solved. At a more tactical level, the solver has to know

W.hat operators to use to collect occurrences, including the situation

in which one occurrence has an implicit "1" 0 its coefficient. An-

other important area of tactics is the handling of x in the denominator

especially the often baffling form "1/x expr" Many scavers have ex-

* plidik knowledge of all of these things, Many have implicit knowledge,

but many have no_knowledge of some of fhem.

So much for basic equipment. A student who had the'abOve knowledge

would be a good solver. But, it appears that there are other thing: that

a solver should know, that are not parts of the skill itself, but

important in creating and maintaining the skill .

We have already touched on the importance of knowing how to tell a

correct operator fromean incorrect one, it appears that every student

must encounter wrong ideas of operators. These may be formed by the

student while learning in class or from'a text, or while attempting to

apply already learned material. They might originate in a misanalyzed

example, Irly false inference, or simply through memory failure. The

student must be able'to detect and.reject theSe filse ideas.

, Despite the importance of tii ability, some students appear to

have-no idea why some operators that might. occur to them are valid and

others are not, beyond appeal to authority. Asked aboLi: an error in'

0
combining fractions, pne student said, "Well, I can't tell you what the

rule Is but,I've seen it done before." _I e Aore extensive remarks of

another student,are excerpted in Flgurei 8.f.

1/4
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Figure 8.1

Comment on knowing the rules

E: asks about what,rule is used transforming
'ax+bx-2x 2aXab' to 'a+b-2 2-b'

S: "Mostly what I've been doing is just mainly
from memory or its been'trying to be from
memory. I knot. there's a lot of rules in
algebra that you have to learn first before
you can go on to you know, that's the most
important thing is to learn those rules...

If I had a book maybe...

I personally can't remember anything about
those.. You have to go ask the teacher."

E: "Ah, so again I'm asking you for help. 14

there,a rule you could tell me that would
tell me when I could cancelzomething of that
s6rt...?"

S: "That I could tell you, that I could tell you,
no. The book coUld tell you, yes"

E: "I mean apart from asking someone if there is
any way that I could figure out whether a
particular thing that I'm doing wduld be
correct or,whether it wouldn't be? Can you
give me any advice along those tines?"

S: "It's always safe to as'k the teacher if you
don't know ,something. Maybe consujt with a
Mend who is doir4 well in the subject or
knows what he's doing."

E: "If I'm all by myself in a locked room or some-
thing is there some way I could figure it out,
like is there some way I could relate it to
other things that 1 might know about algebra
or do 1 have to, you know, are the rules just
things that you have to know or..."

S: 'You're going to have to knew the rules. Whether
' r not you can know if its the end of.the problem
pretty much depends on how Much you have studied
and how muckyou know. You know again it re
lates back to the,rules."
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There seem to be two ways' students might pest thevalidity of

their ideas, use of principles and checking. "Principles" refers to

the basic mathematical properties of the arithmetic operations that

underlie the manipulations of algebra: that' mult'iplication distributes ,

,over addition, that multiplication and division are inverses, and so

ion. A student who knew these principles well could reject operations

that could not be derived from them. Uniortunately, the basic prin-

ciples are almost as numerous and complex as the algebraic operators

based On them, sO students will be doubtful about them. Further, the

testing of an operation by use of the,principles is an exerclse in

proof, and may require some creativity. It is not transparent how

cross multiplication is related to the basic principles, for example,

because the operation as it is performed suppresses the underlying

multiplications.

In our earlier discussion of checking we distinguished global and

local methods, where local methods a're those,that can provide informa-

tion about the correctness of a single step. Of these, trial evaluation

seemed to be the method to prefer, for poor Solvers, because of its

generality and ability to detect both stableand transient errors.
7.

While the b3sic'trial execution method is applicable "directly

only to steps that replace an expressFon by an equivalent one (reductions

in.the terminology of Matz: 1979a), it can be extended to most deduc-

tions, steps that transform'the entire equation, as foll,ows. Most de-
,

ductior can be anaLyzed as performance of the same operation op both

sides of an equation, and simplification. 'Under this decomposition, it

is the simplificatrons where many errors occur and the simplifications



are reductions, that.can be checked by tHal evaluation. Figure 8.2

shows how this method could beused to detect an invalid operation on

reciprocals.

Two deduct'ions io which the method cannot be applied are splitting

of a quadratic equation by factoring, and use 'of the quadratic formula.

These cannot be analyzed as performing the same opertation to both sides

'of the equation. Cross multiplication is a borderline case. ' It canl,e

analyzed as multiplying both sides of the equation by the product of the

denominators, and then simplifying, but as was said atiove this analysii

is not 'obvious.

Problem: Can

Check:

Figure 8.2

Use of trial.evaluation to check,
an operation on reciprocals

be replaced by a + b?*

Substitute a . 2,

1 6

+ +
a b 2 3

a + b 2 + 3 -"--+ 5

6
5 0 , so replacement is not valid. ,

136
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Despite theseilimitations, it appears that "checking by trial"

education might help students filter good ideas from bad. But would

they use it? One prom'ising indication is-that students do seem often

to be aware that they are performing doubtfutotrations, as some of the

comments collected in thi.s report show. Thus Ahey recognize some occa-//

sions when local checking Would help them, if they knew about it.

Lack of knowledge of how to check is probably not the only reason

students do 'not check, however Checking is taught as a means of in-

creasing accuracy. As long as checking is just a way to be more sure

of the answer to a given problem, students are free, to use it or not

according to the accuracy and time pressures they feel. For good solvers,

, it is often rational not to check for this reason. Poor solvers, however,

need to see checking as a way of evaluating their knowledge, not their

answers.

This leads to the last kind of knowledge of algebra that we will

discuss. Students need to know how to distinguish incorrect operators

from correct,ones but they also need to see how this ability fits.. in'to

the learning task. They need to know that they will form misconceptions

and make errors, despite their best efforts, and that there are specific

actions they can take to deal with these difficulties. Testing and

correction of knowledge should be seen as a normal and important activity,

not as an option, or worse, as something good students could avoid. Ms-

cuss.ion of common errors, with emphasis on the often sensible analysis

that lies behind them, might help develop the 4necesLary perspective on

learning.



Meaning in algebra As the Bundy program illustrates, one can do algebra

without understanding it, in the sens -i! of being able to assign any mean-

ing to the entities being manipulated. We'have seen that there is very

little evidence that .the human solvers in the study made use of meanings

in their work. We have suggested nevertheless, that meaning is important

when knowledge of algebra I's learned or recalled. This seems true not

just because of the helpful redundancy that any interconnections in a

body of knowledge seem to provide, but because of the specific role mean-

ing can play in allowing the validity of operatOrs ta. be tested, as in the

trial evaluation method. There the relation between expressionsand cal-
-,

culations is entral. . Another area i4 which we have Suggested,this rela-

tion aould be useful is in learning the sy.ntax of expressions.

The expression-calculation system is an interesting domain of appli-

cation of Greeno's (1978) ideas on understanding. Greeno suggests an

analogy with language comprehension,; in which to understand an entity, say

a sentence, is to have an internal representation of it that is coherent,

connected to'other relevant knowledge, and accurately captures the essen-

4

tial features of the entity. In the expression-calculation domain, under-
)

standing an expression means being able to ccAlstruct an internal represent-

at(on of a calculation? The calculation that the expression represents1

To straighten out these many uses of "represqnt", let us try to

trace the parallel with sentence comprehension more closely. When a
/

sentence is understood, the internal representation of it has to be MOT,e

than a coding of the sounds, say, that make up the sentence. It is.common

to claim that the representation should be a proposition (or set of pro-

positions). But propositions are not things'tha. can exist in someone's

head, so the representation of the sentence is not really, a proposition

gt3s
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but a representation of a proposition. In the same way, the internal

representation of an expression would not be a calculation, but a re-
..

presentation of a calculation. Finally, what proposition is it whose

representation is the appropriate representation of the senteqce? Just

the proposition that the sentence itself represents. Figure 8.3 shows the

analogy between sentence and expression and calculation graphically.

This linguistic analogy may be helpful in clarifying how establish-

, ing calculations as meanings for expressions could lielp students. There

is research indicating that having meanings assigned helps enormously in

the learning.of the syntax of artificial languages (Moeser & Bregman,

1972, 1973). The problem of learning operators that preserve the meaning

of expressions might seem to.be parallel to the problem of learning mean-

ing-preserving transformations, Gut it is not. The operatiomsof algebra

do not alter the rules of syntaxfor expressions: an expression with zero

added to it has the same syntatic.ruies of formation of any other expres-

sion. A passivized sentence may likewise liave the same surface grammar as

sentences generally. But a sentence like "John gave Mary the book," does

not follow the ordinary rules of syntax. So learning mezning-preserving

transformations cannot be separated from learning the syntax of sur-

face str4ngs in the/same way that learning algebrOc manipulations

can be separated from learning the syntax of expressions.

Errors and the psychology of skill Matz (l979a) ,and Brown (1979)

have outlined related theories of the origin of errors in skilled per-

formance. in both theories, errors arise when incomplete knowledge is

extended to cover a new problem, and the nature of the error that is

made'in the extension process is influenced by the Partial knowledge

139
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Figure 8.3

Parallel between understanding a sentence
and understanding an expression

ISentence 1

Mental

Representation

represents> 1Proposition 1

To understand a sentence, one needs a mental representation

of the proposition.

Expression
represents

Mental

cRepresentation

L22culation

represents

To understand and expressiom, one needs a mental representation'

of the calculation.
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that is availaile, Jod by ideas the subject has about the cAaracter of

the operations being learned or applied.

In Matz's theory, operators are constructed from the partial know-

ledge available, and then filtered by a family of "critics" which accept

or reject the construction according to whether it has certain desirable

general properties. For example, Matz suggests that an operator in alge-

bra should "touch every part": it should not ignore any piece of the ex-

pression or expression being transformed. Most actual operators have
a-

ihis property,,though there are exceptions. For example, repladement

of 0 expr by 0 ,does not require any testing, analysis, or copying of

expr. Matz ar.gues that students are likely 'to' make generalizations

"touch every part" 3nd that their-constructed operators witl be made to

obey the generaliz.4tIons.

Brown's theory, developed mosi fully for algorithms in arith-
\

metic, students try to apply thetr existing partial algorithms and run

into missing or impossible steps. They then use their accumulated

general knowledge to "patch" their algorithm so that it.can be executed

to completion. In the patching process they use knowledge about the

Character of famitiar and likely steps, information about the desired

outcome of the lgorithm, and also about featurls of the'execution

process. itself: the Algorith6 should not loop, for example:

While these theories specify mechanisms for the production.of

errors, the mechanisms are quite flexible, anchdepend heavily on the

specific knowledge possessed by,a.solver to shape errors. Conse-,

quently; it is difficult to support or felsify these ideas by an exam-

ination of errors such as those we have-selected; Considering students'

-7t-A
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comments, we did not find students articulating principles like "touch .

every, part", and these would have to be implicit knowledge for our Solvers.

Students comments do show, however, that the sort of stretchipg

of knowledge called for in both theories does occur for many solvers,

and a few of the protocol excerpts presented indicate some of; the know-

ledge solvers bring to bear on the problem. For example, in case S5 6C

in Table 5.8 shows the erroneous application of cross multiplication

halted by the appe'arance of a second equal sign, which violated the stu- .

dents' knowledge of ,the form of,an equation. Above the level of individ-
.

C
ual operators, we.have examples showing a number of indicators of pro-

gress or trouble that students use, collected-in Table 7.5.

We have obtained some general support, then, for the ideas of Matz

and Brown, and some specifics. it might be possible to fill in mare of

the details in these schemes by asking students to evaluate operators

proposed by the experimenters. This might eliclt more comments froh the

students we obisained, as well as getting a more complete picture of the

criteria students may be using by going beyond just self-generated errors.

Two particular categories of errors which might repay further anal-
.

ysis are deletion and recombination errors. While these are perhaps

consistent with the Matz or Brown mechanisms, it seems that these erceirs

orilinate from general Ideas of the task, rather than just being

passed bcritics that embody this knowledge, as in Matz's view, or

rpiulting from a patch on a mutilated algorithm. Since algebra,Can

.

be thought'of as an exertlise in pure symbol manipulation, it. is
1

'tempting to imagine that students might organize Oeir knowledge of

operators around the key notions of deletion and rearrangement, and



N-,
so develop operators- to perform these functions. The existence of

several different deletion operations, and of restrictions on yt-

arrangement might be seen-as detail that could be suppressed. If

this analysis is Correct, it places the origin of some errors closer

to the center of the learning process than the critics or patching

mechanisms of Matz'and, Brown.

l 34
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